Review 3 (§4.1 – §4.7 and §9.1 – §9.4)
Math 205, Fall, 2005

1. Critical points and inflection points
 • a. Critical points, local maxima and local minima, first and second derivative tests.
 • b. Inflection points, concavity.
 • c. Sketch a graph of a function that reflects the information about the signs of the first derivative and the second derivative of the function on different intervals.

2. Global maxima and minima for a function on a closed interval. Let x_1, x_2, \ldots, x_k be the critical points of $f(x)$ in $[a, b]$.

 Glo. Max $= \max\{f(a), f(x_1), f(x_2), \ldots, f(x_k), f(b)\}$,
 Glo. Min $= \min\{f(a), f(x_1), f(x_2), \ldots, f(x_k), f(b)\}$

3. Optimization and other applications.
 • Condition for maximizing profit: $C'(q) = R'(q)$ or $\pi'(q) = 0$.
 • Average Cost function $A(q) = \frac{C(q)}{q}$ which is minimized only if $A(q) = C'(q)$. Graphic explanation of average cost with a cost function curve.
 • Elasticity of demand.
 • Logistic model $P(t) = \frac{L}{1 + Ce^{-kt}}$: Determine the parameters L, k and C; Understand carrying capacity, point of diminishing return; Given C and 3 of the 4 quantities t, $P(t)$, L, and k, find the remaining one.

4. Functions of two variables.
 • Estimate partial derivatives for functions given by table data or by contour diagrams.
 • For a function $f(x, y)$ defined algebraically, find the first partial derivatives $f_x(x, y)$, $f_y(x, y)$ and the second partial derivatives $f_{xx}(x, y)$, $f_{xy}(x, y)$ and $f_{yy}(x, y)$, and evaluate these derivatives at a given point (a, b).
 • Linear approximations: $f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$, or $\Delta f \approx f_x \Delta x + f_y \Delta y$ where “Δ” means “Change in”.