1. Global maxima and minima for a function on a closed interval. Let \(x_1, x_2, \cdots, x_k \) be the critical points of \(f(x) \) in \([a, b]\).

Glo. Max = \(\max\{f(a), f(x_1), f(x_2), \cdots, f(x_k), f(b)\} \),

Glo. Min = \(\min\{f(a), f(x_1), f(x_2), \cdots, f(x_k), f(b)\} \),

2. Optimization and other applications.

- Condition for maximizing profit: \(C'(q) = R'(q) \) or \(\pi'(q) = 0 \).
- Average Cost function \(A(q) = \frac{C(q)}{q} \) which is minimized only if \(A(q) = C'(q) \). Graphic explanation of average cost with a cost function curve.
- Elasticity of demand.
- Logistic model \(P(t) = \frac{L}{1 + Ce^{-kt}} \): Determine the parameters \(L, k \) and \(C \); understand carrying capacity, point of diminishing return; Given \(C \) and 3 of the 4 quantities \(t, P(t), L, \) and \(k \), find the remaining one.

3. Functions of two variables.

- Estimate partial derivatives for functions given by table data or by contour diagrams.
- For a function \(f(x, y) \) defined algebraically, find the first partial derivatives \(f_x(x, y) \), \(f_y(x, y) \) and the second partial derivatives \(f_{xx}(x, y) \), \(f_{xy}(x, y) \) and \(f_{yy}(x, y) \), and evaluate these derivatives at a given point \((a, b)\).
- Linear approximations: \(f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b) \), or \(\Delta f \approx f_x \Delta x + f_y \Delta y \) where “\(\Delta \)” means “Change in”.
- Find critical points of \(f(x, y) \) by solving

\[
\begin{cases}
 f_x(x, y) = 0 \\
 f_y(x, y) = 0;
\end{cases}
\]

Extrema of \(f(x, y) \) and related optimization problems. D-test using

\[
D(x, y) = f_{xx}f_{yy} - (f_{xy})^2.
\]