Below you will find 10 problems, each worth 10 points. Solve the problems in the space provided. When writing a solution to a problem, show all work. No books or notes are allowed. Sign and submit your formula sheet with the exam.

Problem 1. Use the following steps to find the sine and cosine of $\theta = \frac{11\pi}{6}$.

(a) Draw the angle θ in standard position, and specify the quadrant.

(b) Find the reference angle θ_R and the exact values of $\sin \theta_R$ and $\cos \theta_R$. (Do not use a calculator.)

(c) Use the previous steps to determine $\sin \theta$ and $\cos \theta$.

Problem 2. Given \(\tan \theta = \frac{4}{5} \), with \(\pi < \theta < 2\pi \), find the value of \(\tan(\theta/2) \).

Problem 3. A miniature rocket is launched vertically. Ten seconds after launching the rocket has reached an altitude of 500 m. At that time an observer, positioned 1000 m from the launch site, starts tracking the rocket, and the measurement shows that the angle of elevation has increased by 30° in the next ten seconds of flight. What is the altitude of the rocket at that time?

Problem 4. Find the amplitude, period, and phase shift for the equation

\[
y = 5 \sin \left(\pi x - \frac{\pi}{4} \right).
\]
Problem 5. Given α and β in the first quadrant, with \(\sin \alpha = \frac{3}{5} \) and \(\cos \beta = \frac{8}{17} \), find \(\sin(\alpha + \beta) \) and \(\cos(\alpha + \beta) \).

Problem 6. Prove the identity: \((\csc \alpha - \cot \alpha)(1 + \sec \alpha) = \tan \alpha \).

Problem 7. The graph of the equation \(y = a \sin(bx + c) \), with \(a > 0 \) and \(b > 0 \), is shown in the figure below.

(a) Find the amplitude and the period.

(b) Find the coefficients \(a \), \(b \) and \(c \).
Problem 8. Find all solutions of the equation
\[\sin\left(2t - \frac{\pi}{4}\right) = 0. \]

Problem 9. Find the exact values of \(\sin 105^\circ \) and \(\cos 105^\circ \).

Problem 10. Find the solutions of the equation
\[2 \cos^2 t - 5 \cos t + 2 = 0, \]
that are in the interval \([0, 2\pi)\).