Below you will find 10 problems, each worth 10 points. Solve the problems in the space provided. When writing a solution to a problem, show all work. No books or notes are allowed. Sign and submit your formula sheet with the exam.

Problem 1. A rocket, flying on a straight vertical trajectory, is observed from a point positioned 1000 meters away from the launch site. During the final minute of flight, the angle of elevation of the rocket (measured from the observation point) changed from 64° to 78°. How long was the flight path of the rocket during this period? Approximate your answer to the nearest tenth of a meter.
Problem 2. The graph of the equation \(y = a \sin(bx + c) \), with \(a > 0 \) and \(b > 0 \), is shown in the figure below.

(a) Find the amplitude and the period.

(b) Find the coefficients \(a \), \(b \) and \(c \).

Problem 3. Find the amplitude and the period for the curve \(y = 4 \sin\left(2x + \frac{\pi}{3}\right) \).

Problem 4. Verify the identity: \((\csc \theta - \cot \theta)(1 + \sec \theta) = \tan \theta \).
Problem 5. Find all solutions of the equation: \(\sin \left(4x + \frac{\pi}{3} \right) = \frac{1}{2} \). Use exact values.

Problem 6. Find the exact values of \(\sin \left(\frac{23\pi}{3} \right) \) and \(\cos \left(\frac{23\pi}{3} \right) \).

Problem 7. Find the solutions of the equation \(4\cos^2 t - 4\cos t - 3 = 0 \), that are in the interval \([0, 2\pi)\). Use exact values.
Problem 8. Verify the identity: \(\cos x + \sin x \tan x = \sec x \).

Problem 9. Given the triangle \(\triangle ABC \), with \(\hat{C} = 90^\circ \), \(a = 3 \) cm, and \(b = 2 \) cm, find the remaining elements of the triangle: the side \(c \), and the angles \(\hat{A} \) and \(\hat{B} \). (When computing the angles, express them in degrees, rounded to the nearest tenth.)

Problem 10. Find the solutions of the equation \(\tan^2 x - 2 \tan t - 4 = 0 \), that are in the interval \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). Round to nearest tenth of a radian.