Below you will find 10 problems, each worth 10 points. Solve the problems in the space provided. When writing a solution to a problem, **show all work**. No books or notes are allowed. **Sign and submit your formula sheet with the exam.**

Problem 1. Convert the units as indicated:

(a) 12.44° to degrees, minutes and seconds.

\[
12.44^\circ = 12^\circ + 0.44^\circ = 12^\circ + 0.44 \times 60^\prime = 12^\circ + 26.4^\prime = 12^\circ + 26^\prime + 0.4^\prime = 12^\circ + 26^\prime + 0.4 \times 60^\prime = 12^\circ 26^\prime 24^\prime.
\]

(b) $\frac{5\pi}{72}$ (radians) to degrees, minutes and seconds.

\[
\frac{5\pi}{72} = \frac{5\pi}{72} \times \frac{180^\circ}{\pi} = \frac{900^\circ}{72} = \frac{25^\circ}{2} = 12^\circ + \frac{1^\circ}{2} = 12^\circ 30^\prime.
\]
Problem 2. Find two positive coterminal angles and one negative coterminal angle for each of the following angles:

(a) 110° (use degrees);

First positive angle could be: $110^\circ + 360^\circ = 470^\circ$. Second positive angle could be: $110^\circ + 2 \times 360^\circ = 730^\circ$. The negative angle could be: $110^\circ - 360^\circ = -250^\circ$.

(b) $-\frac{7\pi}{6}$ (use radians).

First positive angle could be: $-\frac{7\pi}{6} + 2\pi = -\frac{7\pi}{6} + \frac{12\pi}{6} = \frac{5\pi}{6}$. Second positive angle could be: $-\frac{7\pi}{6} + 4\pi = -\frac{7\pi}{6} + \frac{24\pi}{6} = \frac{17\pi}{6}$. The negative angle could be: $-\frac{7\pi}{6} - 2\pi = -\frac{7\pi}{6} - \frac{12\pi}{6} = -\frac{19\pi}{6}$.

Problem 3. An angle θ, in standard position, is located in the third quadrant and has $\tan \theta = \frac{5}{13}$. Find $\sin \theta$ and $\cos \theta$. (HINT. Use the given information to find the signs for $\sin \theta$ and $\cos \theta$ first. Then use the fundamental identities.)

We have $\sec \theta = \pm \sqrt{1 + \tan^2 \theta} = \pm \sqrt{1 + \left(\frac{5}{13}\right)^2} = \pm \sqrt{1 + \frac{25}{169}} = \pm \sqrt{\frac{194}{169}} = \pm \frac{\sqrt{194}}{13}$.

Since θ is in quadrant III, we actually have $\sec \theta = -\frac{\sqrt{194}}{13}$, so we get $\cos \theta = \frac{1}{\sec \theta} = -\frac{13}{\sqrt{194}}$. This gives

$$\sin \theta = \cos \theta \cdot \tan \theta = -\frac{13}{\sqrt{194}} \cdot \frac{5}{13} = -\frac{5}{\sqrt{194}}.$$

Problem 4. Find the exact values of $\sin \left(-\frac{5\pi}{6}\right)$ and $\cos \left(-\frac{5\pi}{6}\right)$.

Using the formulas for supplements, we have

$$\sin \left(-\frac{5\pi}{6}\right) = \sin \left(\pi - \frac{5\pi}{6}\right) = \sin \left(\frac{\pi}{6}\right) = \frac{1}{2};$$
$$\cos \left(-\frac{5\pi}{6}\right) = \cos \left(\pi - \frac{5\pi}{6}\right) = -\cos \left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}.$$

Using the formula for negatives, we then get:

$$\sin \left(-\frac{5\pi}{6}\right) = -\sin \left(\frac{5\pi}{6}\right) = \frac{1}{2};$$
$$\cos \left(-\frac{5\pi}{6}\right) = \cos \left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}.$$
Problem 5. Find the length of the arc that subtends the angle 120° on a circle of diameter 8 in.

The radian measure of the angle is: \(\theta = 120 \times \frac{\pi}{180} = \frac{120\pi}{180} = \frac{2\pi}{3} \). The radius is half of the diameter, so \(r = 4 \) in. The length of the arc is then

\[\ell = r\theta = 4 \cdot \frac{2\pi}{3} \text{ in} = \frac{8\pi}{3} \text{ in}. \]

Problem 6. Prove the identity:

\[\sin^2 t (\csc^2 t - 1) = \cos^2 t. \]

\[\text{LHS} = \sin^2 t \cdot \left[\frac{1}{\sin^2 t} - 1 \right] = \sin^2 t \cdot \left[\frac{1}{\sin^2 t} - \frac{\sin^2 t}{\sin^2 t} \right] = \sin^2 t \cdot \frac{1 - \sin^2 t}{\sin^2 t} = 1 - \sin^2 t = \cos^2 t = \text{RHS}. \]

Problem 7. The angle \(\theta \) is an acute angle in the right triangle shown in the figure.

Find all six trigonometric functions of \(\theta \).

Using Pythagoras we have

\[\text{adj}^2 + \text{opp}^2 = \text{hyp}^2, \]

which gives \(\text{adj}^2 + 16^2 = 20^2 \). This means that

\[\text{adj}^2 = 20^2 - 16^2 = 400 - 256 = 144, \]

so \(\text{adj} = \sqrt{144} = 12 \).

Using the well known formulas, we now get:

\[\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{16}{20} = \frac{4}{5}; \]
\[\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{12}{20} = \frac{3}{5}; \]
\[\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{16}{12} = \frac{4}{3}; \]
\[\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{12}{16} = \frac{3}{4}; \]
\[\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{20}{12} = \frac{5}{3}; \]
\[\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{20}{16} = \frac{5}{4}. \]
Problem 8. Find the exact values of \(t \), in the interval \([0, 3\pi]\), which satisfy the equation

\[
\sin t = \frac{\sqrt{2}}{2}.
\]

Upon inspecting the graph:

we see that there are four solutions. Since the solution of \(\sin \theta = \frac{\sqrt{2}}{2} \) in the first quadrant is \(\theta = \frac{\pi}{4} \), it follows that the solutions \(t_1 \) and \(t_2 \) of the given equation, in the fundamental interval, must be chosen from the list:

\[
\frac{\pi}{4} \text{(Q.I)}; \quad \pi - \frac{\pi}{4} \text{(Q.II)}; \quad \pi + \frac{\pi}{4} \text{(Q.III)}; \quad 2\pi - \frac{\pi}{4} \text{(Q.IV)}.
\]

Since we want \(\sin t \) positive, the basic solutions have to be \(t_1 = \frac{\pi}{4} \) and \(t_2 = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \). The remaining solutions are then \(t_3 = t_1 + 2\pi = \frac{\pi}{4} + 2\pi = \frac{9\pi}{4} \) and \(t_4 = t_2 + 2\pi = \frac{3\pi}{4} + 2\pi = \frac{11\pi}{4} \).

Problem 9. Find the side labeled \(x \) in the right triangle:

We have

\[
\frac{x}{2\sqrt{3}} = \frac{\text{adj}}{\text{hyp}} = \cos 30^\circ = \frac{\sqrt{3}}{2},
\]

so we get

\[
2x = 2\sqrt{3} \cdot \sqrt{3} = 6.
\]

This gives \(x = \frac{6}{2} = 3 \).

Problem 10. Let \(\theta \) be an angle in standard position, such that the point \(P(-15, 17) \) is on its terminal side. Find all the six trigonometric functions of \(\theta \)

We are given \(x = -15 \) and \(y = 17 \), so we have

\[
r = \sqrt{x^2 + y^2} = \sqrt{(-15)^2 + 17^2} = \sqrt{225 + 289} = \sqrt{514}.
\]

Using the well known formulas, we now get:

\[
\sin \theta = \frac{y}{r} = \frac{17}{\sqrt{514}}; \quad \cos \theta = \frac{x}{r} = -\frac{15}{\sqrt{514}}; \quad \tan \theta = \frac{y}{x} = \frac{17}{15}; \quad \cot \theta = \frac{x}{y} = -\frac{15}{17};
\]

\[
\sec \theta = \frac{r}{x} = -\frac{\sqrt{514}}{15}; \quad \csc \theta = \frac{r}{y} = \frac{\sqrt{514}}{17}.
\]