Section 4.6 / Growth & Decay

Exponential Functions

Exponential Growth Model

\[P(t) = P_0 e^{kt} \]

- \(t \): time
- \(k \): exponential growth rate (\(k > 0 \))
- \(P_0 \): initial amount
- \(e \): Euler Number \(2.718... \)

Examples: Investments
Population growth

Exponential Decay

\[P(t) = P_0 e^{kt}, \quad k < 0 \]

Examples: Half-life problems
 Carbon-dating
Ex. 11 Suppose that in a certain country, the initial population is 2 million people. Also suppose the exponential growth rate is \(k = 0.014 \).

a) Find an exponential growth model that corresponds to this situation.

Answer: \(P(t) = P_0 e^{kt} \)

\[
P(t) = 2 e^{0.014t}
\]

where \(P(t) \) is in millions.

b) Assume \(t = 0 \) corresponds to year 2000, what was the population in 2005?

Answer: \(t = 5 \) goes with 2005

\[
P(5) = 2 e^{0.014(5)} = \frac{2.145}{1} \text{ million people}
\]

c) How long will it take for the initial population to double?

Answer: \(P(t) = 2 e^{0.014t} = 4 \) \(\Rightarrow \) \(2 e^{0.014t} \) Solve for \(t \).
\[2 = e^{0.014t} \]

Convert to logarithmic form (use definition)

\[\ln 2 = 0.014t \]

\[\frac{\ln 2}{0.014} = t \]

\[t \approx 50 \text{ yrs} \]
Ex2) Suppose that in a certain town, in the year 1980, there were 2000 teachers and in 1990, there were 2103 teachers.

a) Assuming exponential growth, find the growth rate k.

Answer: $P(t) = P_0 e^{kt}$

$$2103 = 2000 e^{10k}$$

$$\frac{2103}{2000} = e^{10k} \quad \text{Exponential Equation}$$

$$\ln \left(\frac{2103}{2000} \right) = 10k \quad \text{Convert to Logarithmic Form}$$

$$\frac{\ln \left(\frac{2103}{2000} \right)}{10} = k$$

$$k \approx .005$$

b) What is the growth model?

Answer $P(t) = 2000 e^{.005t}$

c) How many teachers will there be in 2020 (assuming the exponential model holds)
Answer: \[t=0 \rightarrow 1980 \]
\[t=40 \rightarrow 2020 \]

\[P(40) = 2000(e^{0.05 \times 40}) \]
\[\approx 2443 \text{ teachers} \]
Exponential Decay

The \(\frac{1}{2} \) life of carbon-14 is 5,750 years.

(a) Assuming exponential decay, find the value of \(k \) that corresponds to this situation.

Answer: \[P(t) = P_0 e^{kt} \]

\[\frac{1}{2} P_0 = P_0 e^{k(5750)} \]

\[\frac{1}{2} = e^{5750k} \] (Exponential Equation)

Convert to logarithmic form

\[\ln \left(\frac{1}{2} \right) = 5750k \]

\[\ln \left(\frac{1}{2} \right) = k \]

\[\frac{1}{5750} \]

\[k \approx -0.00012 \]

(b) What is the model that goes with this situation?

Answer: \[P(t) = P_0 e^{-0.00012t} \]
e) Suppose an ancient wooden statue is found to have lost 35% of Carbon-14. How old is the artifact?

Answer:
\[P(t) = P_0 e^{-0.00012t} \]

\[0.65 P_0 = P_0 e^{-0.00012t} \]

\[0.65 = e^{-0.00012t} \]

\[t = \frac{\ln(0.65)}{-0.00012} = 3590 \text{ yrs old} \]
Ex) Continuous Compounding

\[P(t) = P_0 e^{rt} \]

\[P(t) = P \left(1 + \frac{r}{n}\right)^{nt} \]

- \(r \): rate of interest
- \(t \): time in yrs
- \(P_0 \): initial investment value

Ex) Suppose that an initial investment, under continuous compounding, after 5 years, grew to $12,000 under an annual 7%. What was the interest rate of initial investment value?

Answer: \[P(t) = P_0 e^{rt} \]

\[12,000 = P_0 e^{0.07 \cdot 5} \]

\[12,000 = P_0 e^{0.35} \] — linear equation

\[\frac{12,000}{e^{0.35}} = P_0 \]

\[P_0 \approx \$8456.26 \]