QUADRATIC FUNCTIONS

PROTOTYPE:

\[f(x) = ax^2 + bx + c. \] \hspace{1cm} (1)

The leading coefficient \(a \neq 0 \) is called the \textit{shape parameter}.

SHAPE-VERTEX FORMULA

One can write any quadratic function (1) as

\[f(x) = a(x - h)^2 + k, \] \hspace{1cm} (Shape-Vertex Formula)

where \(h = -\frac{b}{2a} \) and \(k = f(h) = c - \frac{b^2}{4a} \).

EXAMPLE 1. \(f(x) = 2x^2 - 8x + 5 \).

To derive the Shape-Vertex Formula for \(f(x) \) we first identify the coefficients:

\(a = 2, \quad b = -8, \quad c = -1 \).

With these identifications we have:

\[h = -\frac{b}{2a} = -\frac{(-8)}{2 \cdot (2)} = \frac{8}{4} = 2; \]
\[k = f(h) = f(2) = 2(2)^2 - 8(2) + 5 = -3, \]

so the Shape-Vertex Formula for \(f(x) \) is:

\[f(x) = 2(x - 2)^2 - 3 \]
FACTS ABOUT THE GRAPH:

A. The graph has same shape as the graph of ax^2, but shifted. The shifting is determined by the numbers h and k that appear in the Shape-Vertex Formula.

We illustrate this fact with Example 1 above. In that example we started with the function $f(x) = 2x^2 - 8x + 5$, and we found the Shape-Vertex Formula to be

$$f(x) = 2(x - 2)^2 - 3.$$

By the above Fact, we then know that the graph of $f(x)$ is the same as the graph of $y = 2x^2$, but shifted 2 units to the right, and 3 units down.

The graph of $f(x)$ is shown in red, while the graph of $y = 2x^2$ is shown in blue.
B. The shape of the graph of \(f(x) = ax^2 + bx + c \) is called a \textit{parabola}. The parabola opens upward or downward, depending on the sign of the leading coefficient \(a \), as shown below.

\[
\begin{array}{c}
\text{V} \\
a > 0
\end{array}
\quad
\begin{array}{c}
\text{V} \\
a < 0
\end{array}
\]

\textbf{THE VERTEX.} The “tip” of the parabola, marked by \(V \) in the above pictures, is called the \textit{vertex}. Its coordinates are the numbers \((h, k)\), given in the \textit{Shape-Vertex Formula}. The vertical line through the vertex is an \textit{axis of symmetry} for the parabola.

The vertex is a “turning point” (a point where the graph changes direction). Moreover:

- if \(a > 0 \), then the vertex is a \textit{minimum} point;
- if \(a < 0 \), then the vertex is a \textit{maximum} point.

The intervals of monotonicity (where the function is increasing or decreasing) are \((-\infty, h)\) and \((h, \infty)\).
GRAPHING AND ANALYZING THE FUNCTION

Use the following steps when dealing with a quadratic function

\[f(x) = ax^2 + bx + c. \]

Step 1. Find the *y-intercept* \(f(0) \).

Step 2. Find the *x-intercept(s)*, by solving the equation \(f(x) = 0 \).

Step 3. Find the coordinates of the vertex:

\[x_V = h = \frac{-b}{2a}; \quad y_V = k = f(h) = c - \frac{b^2}{4a}. \]

Step 4. Draw the graph. (Use the information from Steps 1-3.)

Step 5. Analyze the graph and extract information about the function.

- specify whether the vertex is a maximum or a minimum point;
- indicate the intervals where the function is increasing or decreasing.
EXAMPLE. Graph and analyze \(f(x) = -x^2 - 2x + 3 \).

Solution: Step 1. The \(y \)-intercept is \(y = f(0) = -(0)^2 - 2(0) + 3 = 3 \).

Step 2. The \(x \)-intercept(s) are found by solving the equation:
\[-x^2 - 2x + 3 = 0.\]
Using the Quadratic Formula, the solutions are
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot (-1) \cdot (3)}}{2 \cdot (-1)} = \frac{2 \pm 4}{-2},\]
so there are two \(x \)-intercepts: \(x_1 = -3 \) and \(x_2 = 1 \).

Step 3. We find the numbers \(h, k \):
\[h = -\frac{b}{2a} = -\frac{(-2)}{2 \cdot (-1)} = -1,\]
\[k = f(h) = f(-1) = -(1)^2 - 2(-1) + 3 = 4,\]
so the vertex is the point \((-1, 4)\).

Step 4. The graph is shown on the right.

Step 5. The vertex \((-1, 4)\) is a maximum point. The function \(f(x) \) is:
- increasing on \((-\infty, -1)\);
- decreasing on \((-1, \infty)\).
FINDING THE FUNCTION, GIVEN THE VERTEX

When the vertex of the graph is given, we proceed as follows.

Step 1. Replace \(h, k\) in the Shape-Vertex Forumula

\[
f(x) = a(x - h)^2 + k,
\]

so that we get a “preliminary” form of the function:

\[
y = a(x - \#)^2 + \#.
\]

(Here it is understood that \(\#\) mean concrete numbers.

Step 2. Replace \(x\) and \(y\) by the coordinates of the other point given, so that now we would get something like:

\[
\# = a(\#)^2 + \#.
\]

Think of the above as an *equation with \(a\) as the unknown*, ans solve for \(a\).

Step 3. Replace \(a\) in the “preliminary” equation.
EXAMPLE. Find the quadratic function whose graph has vertex \((-1, 2)\) and passes through the point \((1, 10)\).

SOLUTION: Here the vertex gives \(h = -1\) and \(k = 2\).

Step 1. The preliminary equation is

\[
y = a(x - (-1))^2 + 2,
\]

which is the same as

\[
y = a(x + 1)^2 + 2.
\]

Step 2. We replace \(x = 1\) and \(y = 10\), and we get

\[
10 = a(1 + 1)^2 + 2,
\]

which leads to the equation

\[
10 = 4a + 2.
\]

We obviously get \(a = 2\).

Step 3. The function is then given by

\[
f(x) = 2(x + 1)^2 + 2
\]
APPLIED PROBLEMS.

The meaning of the vertex, as the maximum or minimum point for the quadratic function, is often used to solve optimization problems.

EXAMPLE. The daily cost \(C \) of producing lamps at the ABC COmpany is given by

\[
C = 900 - 20x + .2x^2,
\]

where \(x \) is the number of units produced. How many lamps should be produced in order to yield the minimum possible cost?

Solution: What we are dealing with here is a quadratic function

\[
f(x) = 0.2x^2 - 20x + 900,
\]

whose coefficients are \(a = 0.2(> 0) \), \(b = -20 \) and \(c = 900 \). What we need to find is the value of \(x \), for which \(f(x) \) takes the minimum value. Since \(a > 0 \), we know that \(f(x) \) has a minimum point at the vertex. So what we need to find is precisely the \emph{x-coordinate of the vertex}, that is the \emph{h-number}. So the answer is

\[
x = h = -\frac{b}{2a} = -\frac{-20}{2(0.2)} = \frac{20}{0.5} = 50.
\]