INVERSE FUNCTIONS

DEFINITION. Given two functions f and g, we say that g is the inverse of f, if one has:

(a) $f(g(x)) = x$, for all x in the domain of g;
(b) $g(f(x)) = x$, for all x in the domain of f.

In this case the function g is simply denoted by f^{-1}.

Note. It is required that

• $f(x)$ takes values in the domain of g;
• $g(x)$ takes values in the domain of f.

KEY FEATURE: $f^{-1}(x) = ?$ means $f(?) = x$

EXAMPLE 1 (Informal). $f(x) = \frac{x + 2}{3}$.

To find the inverse function f^{-1}, we “undo” the operations:

$$g(x) = 3x - 2.$$

We check that the function g is indeed the inverse of f.

(a) $f(g(x)) = \frac{g(x) + 2}{3} = \frac{3x - 2 + 2}{3} = \frac{3x}{3} = x$;

(b) $g(f(x)) = 3[f(x)] - 2 = 3 \left[\frac{x - 2}{3} \right] + 2 = \frac{3(x - 2)}{3} + 2 = (x - 2) + 2 = x$.

Only after we checked these two conditions, it is safe to write:

$$f^{-1}(x) = 3x - 2.$$
ALGEBRAIC METHOD. To find the inverse of a function $f(x)$ algebraically, we proceed as follows:

Step 1: Set up the equation

$$f(y) = x,$$ \hspace{1cm} (1)

and solve for y. The solution of this equation should be of the form

$$y = \text{expression in } x.$$ \hspace{1cm} (2)

WARNING! The equation (1) may have several solutions. Keep only those y’s that are in the domain of f.

Step 2: Analyze results in Step 1. There are two cases:

(i) If there is some x for which Step 1 produced two (or more) y’s, then STOP. The function f does not have an inverse.

(ii) Define the “candidate” function $g(x)$ as the right hand side of (2). The domain of g consists of all x’s for which Step 1 produces exactly one value of y.

Step 3. Check that g is the inverse of f, using the conditions (a) and (b) in the definition.
EXAMPLE 2. Consider the function \(f(x) = \sqrt{x - 2}, \) and find its inverse (if it has one).

SOLUTION. First we need to determine the domain of \(f. \) This is

\[\text{all numbers } \geq 2. \]

Step 1. Set up the equation \(f(y) = x, \) which reads:

\[\sqrt{y - 2} = x, \]

and solve for \(y. \) Note that this equation forces \(x \geq 0. \) We get

\[y = x^2 + 2. \]

We must restrict to the case when \(y \) is in the domain of \(f, \) that is, \(y \geq 2. \) This means \(x^2 + 2 \geq 2, \) which works without any further restrictions on \(x. \)

Step 2. The “candidate” function is:

\[g(x) = x^2 + 2, \quad x \geq 0. \]

Step 3. (a) \(f(g(x)) = \sqrt{g(x)} - 2 = \sqrt{x^2 + 2} - 2 = \sqrt{x^2} = |x| = x, \) for all \(x \geq 0. \) (IT KEY THAT \(x \geq 0. \))

(b) \(g(f(x)) = [f(x)]^2 + 2 = [\sqrt{x - 2}]^2 + 2 = [x - 2] + 2 = x, \)

for all \(x \geq 2. \)

Conclusion: The function

\[f(x) = \sqrt{x - 2}, \quad x \geq 2 \]

has an inverse, and its inverse is:

\[f^{-1}(x) = x^2 + 2, \quad x \geq 0. \]
EXAMPLE 3. Consider the function $f(x) = x^2 - 1$, and find its inverse (it it has one).

SOLUTION. The domain of f consists of all numbers.

Step 1. Set up the equation $f(y) = x$, which reads:

$$y^2 - 1 = x,$$

and solve for y. We have $y^2 = x + 1$, so we get

$$y = \pm \sqrt{x + 1}.$$

This forces $x \geq -1$. Note that both y’s are in the domain of f.

Step 2. We see that if we take for instance $x = 3$, then Step 1 produces two values $y = \pm 2$, so at this point we conclude that f does not have an inverse.
EXAMPLE 4. Consider the function
\[f(x) = x^2 - 1, \quad x \geq 0, \]
and find its inverse (if it has one).

SOLUTION. This function is the same as in Example 3, except that the \textit{domain of }f\textit{ consists of all numbers }\geq 0.\textit{ }

\textbf{Step 1.} Set up the equation \(f(y) = x \), which reads:
\[y^2 - 1 = x, \]
and solve for \(y \). We have \(y^2 = x + 1 \), so we get
\[y = \pm \sqrt{x + 1}. \]
This forces \(x \geq -1 \). We only need to keep those \(y \)'s that are in the \textit{domain of }f\textit{, that is, }y \geq 0\textit{. This means that we must have}
\[y = \sqrt{x + 1}. \]

\textbf{Step 2.} The “candidate” function is:
\[g(x) = \sqrt{x + 1}, \quad x \geq -1. \]

\textbf{Step 3. (a)} \(f(g(x)) = [g(x)]^2 - 1 = [\sqrt{x + 1}]^2 - 1 = [x + 1] - 1 = x \), for all \(x \geq -1 \).

\(\textbf{(b)} \) \(g(f(x)) = \sqrt{|f(x)|} + 1 = \sqrt{|x^2 - 1|} + 1 = \sqrt{x^2} = |x| = x \), for all \(x \geq 0 \). (IT KEY THAT \(x \geq 0 \).)

\textbf{Conclusion:} The function
\[f(x) = x^2 - 1, \quad x \geq 0 \]
has an inverse, and its inverse is:
\[f^{-1}(x) = \sqrt{x + 1}, \quad x \geq -1. \]
GRAPHING TECHNIQUES

It is possible to decide when a function has an inverse, by inspecting its graph.

HORIZONTAL LINE TEST: A function $f(x)$ has an inverse, precisely when there is no horizontal line that intersects the graph of $f(x)$ more than once.

In addition to this, if $f(x)$ has an inverse, then the domain of f^{-1} consists of those numbers $\#$, for which the horizontal line $y = \#$ intersects the graph of $f(x)$.

Let us analyze Examples 2, 3, and 4 above.

EXAMPLE 2. $f(x) = \sqrt{x - 2}, \quad x \geq 2$. The graph is:

![Graph of f(x) with horizontal line y = # intersecting the graph]

We see that there is no horizontal line that intersects the graph twice (or more), so $f(x)$ indeed has an inverse. The horizontal lines that intersect the graph of $f(x)$ correspond to numbers ≥ 0, so we can conclude that the domain of f^{-1} consists of all numbers ≥ 0.

6
EXAMPLE 3. \(f(x) = x^2 - 1, \quad x = \text{any number} \). The graph is:

![Graph of a function with a horizontal line at y = 3 intersecting the graph twice, indicating the function does not have an inverse.]

We see that the horizontal line \(y = 3 \) intersects the graph twice, so the function \(f(x) \) does not have an inverse.
EXAMPLE 4. $f(x) = x^2 - 1, \quad x \geq 0$. The graph is:

We see that there is no horizontal line that intersects the graph twice (or more), so $f(x)$ indeed has an inverse. The horizontal lines that intersect the graph of $f(x)$ correspond to numbers ≥ -1, so we can conclude that the domain of f^{-1} consists of all numbers ≥ -1.
GRAPH OF THE INVERSE FUNCTION

REFLECTION RULE: If the function $f(x)$ has an inverse, then the graph of the inverse function $f^{-1}(x)$ is obtained by reflecting the graph of $f(x)$ with respect to the diagonal line $y = x$.

Let us analyze Examples 2 and 4 above. (The diagonal line $y = x$ is shown as a black dotted line.)

EXAMPLE 2. $f(x) = \sqrt{x - 2}, \ x \geq 2$. The graph of $f(x)$ is shown in blue. The graph of the inverse function

$$f^{-1}(x) = x^2 + 2, \ x \geq 0$$

is shown in red.
EXAMPLE 4. $f(x) = x^2 - 1, \quad x \geq 0$. The graph of $f(x)$ is shown in blue. The graph of the inverse function

$$f^{-1}(x) = \sqrt{x + 1}, \quad x \geq -1$$

is shown in red.