Choose and work any 6 of the following 15 problems. Start each problem on a new sheet of paper. Do not turn in more than six problems. In the problems below, a space always means a topological space.

1. Let \(f : X \to Y \) be any function, let \(A \subseteq \mathcal{P}(X) \) and \(B \subseteq \mathcal{P}(Y) \). Prove or disprove each of the following:
 (a) \(f[\bigcap A] = \bigcap\{f[A]|A \in A\} \)
 (b) \(f^{-1}[\bigcap B] = \bigcap\{f^{-1}[B]|B \in B\} \)

2. (a) State the Axiom of Choice.
 (b) State the Well-Ordering Theorem.
 (c) Either use the Axiom of Choice to prove the Well-Ordering Theorem or use the Well-Ordering Theorem to prove the Axiom of Choice.

3. Let \(X \) be a well-ordered set in the order topology, and assume \(X \) has a maximal element. Prove \(X \) is a compact space.

4. Prove that every closed subset of a metrizable space is a countable intersection of open sets.

5. Let \(X \) be a connected and locally path connected space. Prove \(X \) is path connected.

6. Let \(I \) denote the closed unit interval \([0, 1]\) in \(\mathbb{R} \) (the real numbers with its usual topology). Prove or disprove that in \(\mathbb{R}^\mathbb{R} \) with its usual product topology \((I^\circ)^\mathbb{R} = (I^\circ)^\circ\), (where \(A^\circ \) denotes the interior of \(A \)).

7. Let \(X \xrightarrow{f} Y \) be any continuous function.
 (a) Prove that there is a factorization of \(f \) \(X \xrightarrow{f} Y = X \xrightarrow{q} Z \xrightarrow{m} Y \) where \(q \) is a quotient map and \(m \) is a one-to-one continuous function.
 (b) Prove that the factorization \(f = m \circ q \) of part (a) is essentially unique in the sense that if \(X \xrightarrow{f} Y = X \xrightarrow{\hat{q}} \hat{Z} \xrightarrow{\hat{m}} Y \) is also a factorization of \(f \) with \(\hat{q} \) a quotient map and \(\hat{m} \) one-to-one and continuous, then there is a unique homeomorphism \(Z \xrightarrow{h} \hat{Z} \) such that \(h \circ q = \hat{q} \) and \(\hat{m} \circ h = m \).
8. Prove that a filter F on a space X converges to a point $x \in X$ if and only if the net f based on F converges to x.

9. Let (X, \leq) be a linearly ordered set and let τ be the topology on X inherited from the order. If A is a subset of X, there are two natural ways to topologize A. The first, τ_1, is as a subspace of (X, τ). The second, τ_2, is as an ordered space with the order on A inherited from (X, \leq). Prove or disprove that in all cases $(A, \tau_1) = (A, \tau_2)$.

10. Let A be a connected subset of a connected space X, and let C be a component of $X - A$. Prove $X - C$ is connected.

11. Prove that a Hausdorff space with a basis consisting of sets that are both open and closed is totally disconnected.

12. Prove or disprove.
 (a) Every quotient map is an open map.
 (b) Every open map is a quotient map.

13. Prove that a compact subset of a Hausdorff space is closed.

14. Find a flaw in the following purported proof of the statement:

 Every discrete subspace of a topological space that has no isolated points is nowhere dense.

 Purported proof:

 Suppose X is a space with no isolated points and D is a discrete subspace of X. If D is not nowhere dense, then there is a nonempty open set U with $U \subseteq \overline{D}$. Thus there is some $d \in D \cap U$. Since D is discrete, there is some open set $W \subseteq U$ such that $W \cap D = \{d\}$. Since X has no isolated points $W \neq \{d\}$. Thus $W \setminus \{d\}$ is a nonempty open set contained in \overline{D}. Thus there is some $\tilde{d} \in (W \setminus \{d\}) \cap D \subseteq W \cap D = \{d\}$, which is a contradiction. Thus D must be nowhere dense.

15. Assume X is a normal space. Let $\beta(X)$ be the Čech-Stone compactification of X, and let $y \in \beta(X) - X$. Prove that y is not the limit of a sequence of points of X.