Choose and work any 6 of the following 15 problems. Start each problem on a new sheet of paper. Do not turn in more than six problems. In the problems below, a space always means a topological space.

1. Prove or disprove: For any space X with topology \mathcal{J}, the family $\mathcal{B} = \{ A \subseteq X \mid A$ equals the interior of its closure $\}$ forms a base for some topology \mathcal{J}' on X.

2. Prove that a quotient space of a locally connected space is locally connected.

3. Let $f : X \to Y$ be an open map between the spaces X and Y. Let $B \subseteq Y$ and $A = f^{-1}[B]$. Prove that the restriction $\overline{f} : A \to B$ (i.e., $\overline{f}(a) = f(a)$) is an open map from A to B.

4. (a) State the Axiom of Choice.

(b) State the Well-Ordering Theorem.

(c) Either use the Axiom of Choice to prove the Well-Ordering Theorem or use the Well-Ordering Theorem to prove the Axiom of Choice.

5. Prove that the plane \mathbb{R}^2 with its usual topology is not equal to a countable union of straight lines.

6. Prove that the Sorgenfrey line $X = \mathbb{R}$ with basis $\{(a,b) \mid a,b \in \mathbb{R}\}$ is a paracompact space.
7. Let \(f : [a, b] \to \mathbb{R} \) be a real-valued function on a closed interval and let \(G = \{(x, f(x)) \in \mathbb{R} \times \mathbb{R} \mid a \leq x \leq b\} \) be its graph. Prove or give a counterexample for the following.

(a) If \(G \) is connected, then \(f \) is continuous.

(b) If \(f \) is continuous, then \(G \) is connected.

8. Prove that the net based on an ultrafilter is an ultranet.

9. Let \(Y \) be a compact space. Prove that the projection map \(\pi_1 : X \times Y \to X \) is a closed map.

10. Let \(A \) be a subset of a complete metric space \(X \). Prove that \(A \) is totally bounded if and only if the closure \(\overline{A} \) is compact.

11. Let \(X \) be a completely regular \(T_1 \) space (i.e., one point sets are closed, and for each closed set \(C \) and point \(x \not\in C \), there exists a continuous function \(f : X \to [0, 1] \) with \(f(x) = 1 \) and \(f[C] = \{0\} \)). Prove that the Stone-Čech compactification \(\beta(X) \) is connected if and only if \(X \) is connected.

12. Let \(f : X \to Y \) be a continuous surjective map from a compact space \(X \) to a Hausdorff space \(Y \). Prove that \(f \) is a quotient map.

13. Let \(D \) be a dense subset of a metric space \(X \), and let \(Y \) be a complete metric space. Prove that any uniformly continuous function \(f : D \to Y \) can be extended to a uniformly continuous function \(F : X \to Y \) (i.e., \(F\big|_D = f \)).

14. Prove that a metric space is compact if and only if every sequence has a convergent subsequence.

15. Prove that each metric space is a normal space.