Choose and work and 6 of the following problems. Start each new problem on a new sheet of paper. Do not turn in more than six problems. Below a “space” always means a “topological space”.

1. Prove or disprove:
 (a) Closed subspaces of path connected spaces are path connected.
 (b) If \(f : X \to Y \) is continuous and \(X \) is path connected, then \(f[X] \) is path connected.

2. Let \(A \) be a collection of subsets of the topological space \(X \) such that \(X = \bigcup A \). Consider the function \(f : X \to Y \); suppose that \(f|A \) is continuous for each \(A \in A \).
 (a) Show that if \(A \) is finite and each member of \(A \) is closed, then \(f \) is continuous.
 (b) Give an example to show that the word “finite” in part (a) cannot be changed to “countable”.

3. Let \(A \) and \(B \) be disjoint compact subsets in the Hausdorff space \(X \). Show that there are disjoint open subsets \(U \) and \(V \) of \(X \) such that \(A \subseteq U \) and \(B \subseteq V \).

4. Let \(Y \) be an ordered set with the order topology. Let \(f, g : X \to Y \) be continuous.
 (a) Let \(h : X \to Y \) be the function given by
 \[
 h(x) := \min\{f(x), g(x)\}.
 \]
 Show that \(h \) is continuous.
 (b) Show that the set \(\{x \in X | f(x) \leq g(x)\} \) is closed in \(X \).

5. Let \(X \) be a complete metric space and \(f : X \to \mathbb{R} \) a continuous real-valued function on \(X \). Show that every nonempty open subset of \(X \) contains a nonempty open subset on which \(f \) is bounded.

6. Let \(f : X \to Y \) be a continuous surjective map, where \(X \) is compact and \(Y \) is Hausdorff. Show that \(f \) is a quotient map.

7. A space \(X \) is said to be completely regular if one-point sets are closed and if for each point \(x_0 \) and each closed subset \(A \) not containing \(x_0 \), there is a continuous function \(f : X \to [0, 1] \) such that \(f(x_0) = 1 \) and \(f[A] \subset \{0\} \).
 Show that every locally compact Hausdorff space is completely regular.

8. If \(f : X \to Y \) and \(g : Y \to X \) are continuous functions such that \(g \circ f \) is the identity function on \(X \), prove that \(f \) is a topological embedding and that \(g \) is a quotient map.

9. If \(f \) and \(g \) are real-valued continuous functions with the same domain, prove that \(f + g \) is continuous, where \((f + g)(x) \equiv f(x) + g(x) \) for any \(x \) in the domain.

10. Prove that a filter \(G \) on a set \(X \) is an ultrafilter if and only if for each subset \(A \) of \(X \), either \(A \in G \) or \(X \setminus A \in G \).

11. Prove or disprove:
 (a) Every compact subset of a Hausdorff space is closed.
(b) Every closed subset of a Hausdorff space is compact.

12. Show that a metrizable space X has a countable dense subset if and only if it has a countable basis.

13. Prove or disprove that closed subspaces of normal spaces are normal.

14. Let Y be a metric space and let $f_n : X \to Y$ be a sequence of continuous functions and $f : X \to Y$ a (not necessarily continuous) function. Suppose that $\{f_n\}$ is equicontinuous and $f_n(x) \to f(x)$ for each $x \in X$ (point-wise convergence). Show that f is continuous.