1) Suppose \(U = \{ U_j \mid j \in J \} \) is a finite open cover of a normal topological space \(X \). Give a direct construction of an open cover \(\{ V_j \mid j \in J \} \) so that \(\overline{U_j} \subseteq V_j \) for each \(j \in J \). Consider a partition of unity subordinate to \(U \).

2) Prove that a metric space is compact if and only if it is sequentially compact.

3) Prove that the one-point compactification of a 2nd countable, locally compact space is metrizable.

4) Suppose that \(f : [0,1] \rightarrow S^2 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1 \} \) is continuous and satisfies
 a) \(f(0) = f(1) \)
 b) \(f([0,1]) \) is one-to-one.

 Show that
 a) \(\text{image } f \cong S^2 \)
 b) There is a continuous homotopy \(F : [0,1] \times [0,1] \rightarrow S^2 \)

5) A topological space is said to be extremely disconnected if the closure of every open set is open.
 a) Show that a space is extremely disconnected if and only if every two disjoint open sets have disjoint closures.
 b) Let \(N \) be the natural numbers with the discrete topology and \(X \) be the Stone–Čech compactification of \(N \). Show that \(X \) is extremely disconnected.
7) Let \(S^n = \{ (x_1, x_2, ..., x_{n+1}) \mid \sum_{i=1}^{n+1} x_i^2 = 1 \} \subseteq \mathbb{R}^{n+1} \) be \(n \geq 1 \).

Define an equivalence relation \(~ \) on \(S^n \) by \(x ~ y \) if \(x = \frac{y}{|y|} \) and let \(P^n \) be the topological space \(S^n/\sim \).

Let \(D^n = \{ (x_1, x_2, ..., x_n) \mid \sum_{i=1}^{n} x_i^2 = 1 \} \). Then \(S^n \) is a closed subset of \(D^n \). Let \(\pi_n : S^n \rightarrow P^n \) be the natural projection. Show that \(\pi_n \) is homeomorphic to \(P^n \) for \(n \geq 2 \).

3) Show that \(\{ (x, \sin 1/x) \mid 0 < x \leq 1 \} \cup \{ (0, y) \mid -1 \leq y \leq 1 \} \subseteq \mathbb{R}^2 \) is connected but not path connected.

5) Define \(f : \mathbb{S}^1 \times \mathbb{S}^1 \rightarrow \mathbb{R} \) by \(f(x, y) = \sqrt{x^2 + y^2} \).

Show that \(f \) is continuous.

10) Let \(X \) be a compact and Hausdorff. Let \(\mathcal{F} = \{ f : X \rightarrow Y \mid f \text{ continuous} \} \) and \(Y \subseteq X \) be fixed. Show that \(\mathcal{F} \) is a compact subset of \(C(X, X) \) with respect to the compact-open topology.