In this exam λ denotes Lebesgue outer measure on \mathbb{R} and (X, \mathcal{A}, μ) denotes a measure space.

1. (a) Define Lebesgue outer measure λ on \mathbb{R}.
 (b) What does it mean to say that a subset E of \mathbb{R} is λ-measurable?
 (c) Use the fact that the family \mathcal{M}_λ of all λ-measurable subsets of \mathbb{R} is a σ-algebra to prove that every Borel subset of \mathbb{R} is λ-measurable.

2. Prove the following assertions. You may use the fact that the restriction of λ to \mathcal{M}_λ is countably additive if you wish.
 (a) If $a < b$ in \mathbb{R}, then $\lambda([a, b]) = b - a$.
 (b) There exists a compact set $K \subset [0, 1]$ such that $\lambda(K) > \frac{3}{4}$ and K contains no rational number.

4. (a) What does it mean to say that a function $f : X \to [-\infty, \infty]$ is \mathcal{A}-measurable?
 (b) Suppose that $f_n : X \to [-\infty, \infty]$ is \mathcal{A}-measurable for $n = 1, 2, \ldots$ and define f on X by
 $$f(x) = \lim_{n \to \infty} f_n(x)$$
 for $x \in X$. Use your definition in (a) to prove that f is \mathcal{A}-measurable.

5. Let $f : X \to [0, \infty]$ be \mathcal{A}-measurable. Define
 $$A = \{(x, y) \in X \times \mathbb{R} : 0 \leq y < f(x)\}$$
 Prove that $A \in \mathcal{A} \times \mathcal{M}_\lambda$ and that if μ is σ-finite, then
 $$\mu \times \lambda(A) = \int_X f \, d\mu.$$

6. Let $(f_n)_{n=1}^\infty$ be a sequence of real-valued \mathcal{A}-measurable functions on X that converges to some function f at each point of X. Prove that for each $a \in \mathbb{R}$ we have
 $$\mu(\{f > a\}) \leq \lim_{n \to \infty} \mu(\{f_n > a\}).$$

7. Let $f : X \to [0, \infty]$ be \mathcal{A}-measurable and suppose that μ is σ-finite. Define $m(t) = \mu(\{f > t\})$ for each $t \geq 0$. Prove that if $0 < p < \infty$, then
 $$\int_X f^p \, d\mu = p \int_0^\infty t^{p-1} m(t) \, dt.$$
 [Hint: $f^p(x) = \int_0^{f(x)} pt^{p-1} \, dt$.]

8. Prove the completeness of $L^p(\mu)$ for $1 \leq p < \infty$.

9. Let $2 \leq p < \infty$ and let $f, g \in L^p(\mu)$. Prove that
 $$\| \frac{f + g}{2} \|_p^p + \| \frac{f - g}{2} \|_p^p \leq \frac{1}{2}(\| f \|_p^p + \| g \|_p^p).$$
 [Hints: First show that if $a, b \geq 0$, then $a^p + b^p \leq (a^2 + b^2)^{p/2}$ and $(\frac{a^2 + b^2}{2})^{1/2} \leq \left(\frac{a^p + b^p}{2}\right)^{1/p}$.]
10. Suppose $\mu(X) < \infty$ and let ν be another (positive) measure on (X, \mathcal{A}) with $\nu(X) < \infty$. Let $\nu = \nu_a + \nu_s$ be the Lebesgue decomposition of ν with respect to μ and let $w : X \to [0, \infty]$ be a Radon-Nikodym derivative of ν_a with respect to μ. Define w_0 on X by $w_0(x) = \min\{w(x), 1\}$. Define w_0 on X by $w_0(x) = \min\{w(x), 1\}$.

Prove the following:

(a) For each \mathcal{A}-measurable $f : X \to [0, \infty]$ we have

$$\int f w_0 d\mu \leq \min\left\{ \int f d\nu, \int f d\mu \right\}.$$

(b) Suppose that to each $\varepsilon > 0$ corresponds some \mathcal{A}-measurable $f : X \to [0, \infty]$ such that

$$\left(\int f d\nu \right) \left(\int f^{-1} d\mu \right) < \varepsilon$$

where $f^{-1} = 1/f$. Then ν and μ are mutually singular. [Hint for (b): Apply the Schwarz Inequality to $f^{1/2} \cdot f^{-1/2} = 1$ for the measure $w_0 d\mu$.]