1. Let \(\pi : S^2 \to \mathbb{RP}^2 \) be the standard covering projection. Prove that there is no map \(f : \mathbb{RP}^2 \to S^2 \) so that \(\pi \circ f = \text{id} \).

2. Recall that

\[
d\alpha(X_0, \ldots, X_p) = \sum_{k=0}^{P} (-1)^k X_k \alpha(X_0, \ldots, \hat{X}_k, \ldots X_p)
+ \sum_{i<j} (-1)^{i+j} \alpha([X_i, X_j], \ldots, \hat{X}_i, \ldots \hat{X}_j \ldots X_p)
\]

Prove that \(d\alpha(X_0, \ldots, X_p) = \sum_{k=0}^{P} (-1)^k (\nabla X_k \alpha)(X_0, \ldots, \hat{X}_k, \ldots X_p) \).

3. (a) Give the definition of a Lie group.
 (b) Give the definition of a Lie algebra.
 (c) Give the definition of a representation of a Lie group, \(\mu : G \to \text{Aut}(V) \).
 (d) Give the definition of a representation of a Lie algebra, \(\dot{\mu} : g \to \text{End}(V) \).
 (e) Define the Lie algebra of a Lie group.
 (f) Describe how a representation of a Lie group induces a representation of the corresponding Lie algebra and prove that the induced representation is a Lie algebra representation.

4. Prove that the holonomy of a simply connected Riemannian manifold is connected.
5. Let \(X = \frac{\partial}{\partial x} \) and \(Y = \frac{\partial}{\partial x} + (x^2 + 1) \frac{\partial}{\partial y} \) on \(\mathbb{R}^2 \).

(a) Compute \([X, Y]\).

(b) Compute the flow of \(X \).

(c) Compute the flow of \(Y \).

(d) Let \(F^Z : \mathbb{R} \times M \to M \) be the flow of a vector field \(Z \). If \(F^Z_s \circ F^W_t = F^W_t \circ F^Z_s \) for all \(s \) and \(t \), what can you say about \([Z, W]\)? Why?

(e) Is there a function \(f_Y : \mathbb{R}^2 \to \mathbb{R} \) so that \(F^{f_X}_s \circ F^Y_s = F^Y_s \circ F^{f_X}_s \) for all \(s \) and \(t \)? Why?

6. Let \(f : \mathbb{R}^3 \to \mathbb{R} : f(x, y, z) = xy - z \).

\(\Sigma = f^{-1}(0) \cap \{(x, y, z)|x^2 + y^2 \leq 1\} \)

(a) Verify that \(\Sigma \) is a manifold.

(b) Compare the orientation induced on \(\Sigma \) using \(\nabla f / |\nabla f| \) and \(dx \wedge dy \wedge dz \) with the orientation \(dx \wedge dy \).

(c) Compute \(\int_{\Sigma} \frac{|\nabla f \circ \kappa|}{|\nabla f|} \, dx \wedge dy \) when \(\Sigma \) is oriented by \(dx \wedge dy \). What does this represent?

7. The connected sum \(M_1 \# M_2 \) of two oriented \(n \)-manifolds \(M_1, M_2 \) is defined as \((M_1 \setminus \text{int} B^n) \cup_{S^{n-1}} (M_2 \setminus \text{int} B^n)\), where \(B^n \) is a ball in \(M_1(M_2) \) and \(S^{n-1} \) is its boundary.

(a) Show that if \(n \geq 3 \), then \(\pi_1(M_1 \# M_2) = \pi_1(M_1) \ast \pi_1(M_2) \).

(b) Compute the fundamental group of \(T^2 \# T^2 \) (where \(T^2 \) is the 2-dimensional torus).

[Hint: What is \(\pi_1(T^2 \setminus \text{int} D^2) \)?]

8. (a) Show that there exists a natural map \(S^1 \times S^3 \to U(2) \) with discrete fiber by using the Lie group structure of \(S^1 \) and \(S^3 \).

(b) What is the fiber?

(c) Using the result above, what is \(\pi_1 U(2) \)?