Geometry of Manifolds Qualifying Exam
Fall 1997

Part A. Do all nine (9) questions in part A.

1. What is the fundamental group of
 (a) \(\mathbb{RP}^2 \) (the real projective plane)
 (b) \(S^1 \times S^1 \)
 (c) \(T(M) \), the total space of the tangent bundle to a simply connected smooth manifold, \(M \).

2. Describe in detain the flows of the vectorfield on \(\mathbb{R}^2 \) given by
 \[-y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \]

3. Let \(\omega \) be the 1-form on \(\mathbb{R}^2 \) given by \(x(x-1)(y-1)dx \), and let \(R \) be the region
 \[\{(x,y)|0 \leq x \leq 1, 0 \leq y \leq 1\} \]
 Find \(\int_R d\omega \).

4. (a) Give an example of a compact orientable manifold with non-trivial tangent bundle.
 (b) Give an example of a compact orientable manifold with trivial tangent bundle.
 (c) Give an example of a compact non-orientable manifold.

5. If \(M = S^1 \times S^4 \), what is the dimension of the fibres of the third exterior bundle \(\Lambda^3(M) \)?

6. How many non-zero vectorspaces of differential forms are there in the deRham complex of \(S^2 \times S^2 \)?

7. What is the scalar curvature of the surface \(3x + 2y - z = 0 \) in \(\mathbb{R}^3 \) at the point \((0,0,0)\)?

8. Give an example of a locally Euclidean topological space which is not a topological manifold.

9. State the deRham Theorem.

Part B. Choose four (4) and only four of the following problems.

1. On \(\mathbb{R}^3 \) with standard Euclidean coordinates \((x, y, z)\), consider the 2-form \(\alpha = f(x, y, z)dx \wedge dy + yzdx \wedge dz + x^2dy \wedge dz \). Choose a function \(f(x, y, z) \) so that \(d\alpha = 0 \) and \(\alpha|_{z=1} = dx \wedge dy \).

2. (a) Define the deRham cohomology groups of a differentiable manifold.
 (b) Calculate the deRham cohomology groups of the circle \(S^1 \) directly from the definition in part (a).

3. Give a detailed computation of the fundamental group of the closed compact surface of genus 2 (a.k.a the “two-holed torus”).

4. (a) Write down the deRham cohomology groups for the 4-sphere \(S^4 \).
 (b) Suppose that \(\omega \) is a differential 2-form on \(S^4 \) and that \(d\omega = 0 \). Show that
 i. \(\omega \wedge \omega = d\phi \) for some 3-form \(\phi \).
ii. $\int_{S^4} \omega \wedge \omega = 0$.

iii. There is at least one point $x \in S^4$ such that $\omega \wedge \omega(x) = 0$.

5. (a) Define what we mean by a Lie group.

(b) If G is a Lie group, define its Lie algebra g.

(c) Apply the construction of b) to determine the Lie algebra of $SO(3)$, including a derivation of the bracket.

(d) Show that the tangent bundle to a Lie group is equivalent to a trivial (product) bundle.

6. Let (M,g) be a Riemannian manifold and $V(M)$ be the smooth vectorfields over M.

(a) For $X,Y \in V(M)$ define the Riemannian curvature operator $R(X,Y) : V(M) \to V(M)$.

(b) Show that if $M = \mathbb{R}^n$ and g is the Euclidean metric, then $R(X,Y)Z = 0$ for all vectorfields X,Y,Z.

(c) Suppose that $R(X,Y)Z = 0$ for all vectorfields X,Y,Z on an arbitrary Riemannian manifold (M,g). Sketch a proof that shows that for $x \in M$ there is a coordinate system (x_1, \ldots, x_n) around x such that

$$g = \sum_{i=1}^{n} dx^i \otimes dx^i$$