1. Let \(g_n : B_R(0) \to \mathbb{R} \), where \(B_R(0) \subset \mathbb{R}^n \) is the ball of radius \(R \) centered at \(0 \), be a sequence of harmonic functions satisfying that \(g_n(x_0) \) converges for some \(x_0 \in B_R(0) \). Show that \(g_n \) converges to a harmonic function in \(B_R(0) \).

(Hint: Recall that any function that is harmonic in \(D'(\Omega) \) is harmonic in \(\Omega \), combine this with Harnack’s inequality.)

2. Show that under suitable assumptions on the function \(f : \mathbb{R} \to \mathbb{R} \), the bounded solution to

\[
(P1) \begin{cases}
 u_t = u_{xx}, & \text{for } x > 0, \ t > 0 \\
 u_x(0, t) = 0, & t > 0 \\
 u(x, 0) = f(x), & 0 < x,
\end{cases}
\]

Is given by

\[
u(x, t) = \int_0^\infty G(x, \xi, t)f(\xi) \ d\xi,
\]

where \(G(x, \xi, t) = K(x - \xi, t) - K(x + \xi, t) \) and \(K \) is the fundamental solution of the heat equation.

(Hint: extend \(f \) in a suitable way to \((\mathbb{R} \times \mathbb{R}) \) and solve the initial value problem for the extended \(f \).)

State a sufficient condition on the growth of \(f \) for existence and uniqueness of solution to \((P1) \) to hold.

3. Show that the problem

\[
(P2) \begin{cases}
 u'(t) = f(u(t)), \\
 u(0) = 0
\end{cases}
\]

need not be uniquely solvable in any neighborhood of \(t = 0 \) if \(f \) is continuous but not Lipschitz.

4. Suppose \(u, v \) are two solutions of

\[
\frac{d^2f}{dt^2} + 3t \frac{df}{dt} - f = 0
\]

with \(W(u, v) \neq 0 \) for all \(t \) where \(W \) denotes the Wronskian. Show that the zeros of \(u \) and \(v \) interlace, i.e. if \(v(p) = 0 = v(q) \), \(p < q \), then there exists an \(r, p \leq r \leq q \) with \(u(r) = 0 \) and similarly there is a zero of \(v \) between every pair of zeros of \(u \).
5. Let $J_0(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(t \cos(\theta)) \, d\theta$. Show that $J_0(t)$ solves the initial value problem

$$ty'' + y' + ty = 0, \quad y(0) = 1.$$

(Hint: write everything in terms of power series.)

6. Suppose u solves

$$u_{xx} + 3u_{xt} + 2u_{tt} = 0$$
$$u(x, 0) = F(x)$$
$$u_t(x, 0) = G(x)$$

where $F, G \in C^2(\mathbb{R})$. Suppose also $F(x) = 0 = G(x)$ for $-1 \leq x \leq 1$. For what region of $\{(x, t) : t > 0\}$ can you conclude $u(x, t) = 0$?