Partial Differential Equations
Qualifying Examination
September 14, 1987

Do any 7 problems.

1. (a) What does it mean to say that a problem in partial differential equations is well-posed?
 (b) Given a region \(\Omega \) in \(\mathbb{R}^n \) and a second order linear PDE defined in \(\Omega \), what does it mean to say the PDE is elliptic in \(\Omega \)?
 (c) Consider the Cauchy problem
 \[
 u_t = \Delta u, \quad x \in \mathbb{R}^n, \quad t > 0
 \]
 \[
 u(0, x) = f(x), \quad x \in \mathbb{R}^n.
 \]

 State the Maximum Principle for the solution of this problem (be sure to state clearly all relevant hypotheses).

2. Let \(\mathcal{D} = \{ u | u \in C^2(\overline{\Omega}), u(x) = f(x) \text{ for } x \in \partial\Omega \} \) where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with smooth boundary. For \(u \in \mathcal{D} \) let
 \[
 J(u) = \int_{\Omega} |\nabla u|^2 \, dx.
 \]

 Suppose that \(u \in \mathcal{D} \) satisfies the Dirichlet problem
 \[
 \Delta u = 0 \quad \text{in } \Omega

 u(x) = f(x) \quad \text{on } \partial\Omega.
 \]

 Prove that \(u \) minimizes \(J \).

3. (a) Consider the initial value problem
 \[
 u_t + uu_x = 0 \quad -\infty < x < \infty, \quad t > 0
 \]
 \[
 u(x, 0) = f(x), \quad -\infty < x < \infty.
 \]

 Assume \(f \) is \(C^1 \). Show that unless \(f \) is nondecreasing on \((-\infty, \infty) \) there cannot be a \(C^1 \) function \(u(x, t), \quad -\infty < x < \infty, \quad t \geq 0 \) which is a solution of the IVP everywhere in \(-\infty < x < \infty, \quad t \geq 0 \).
(b) Show that the IVP

\[u_t + uu_x = 0 \quad -\infty < x < \infty, \quad t > 0 \]
\[u(x,0) = 2x + 1 \quad -\infty < x < \infty \]

has a smooth solution by finding an explicit formula for the solution.

4. Consider the quasilinear system

\[u_t + uu_x + \frac{c^2}{\rho} = 0 \]
\[\rho_t + u\rho_x + \rho u_x = 0 \]

where \(u \) and \(\rho \) are unknown functions of \(x \) and \(t \) and \(c \) is a known function of \(\rho \).

(a) Show that this is a hyperbolic system provided we assume \(c(\rho) > 0 \).

(b) Find the differential equations of the characteristic curves for this system.

5. Let \(\Omega \) be the first quadrant in \(\mathbb{R}^2 \). Define \(f(x,y) \) for \((x,y) \in \partial \Omega \) by:

\[f(0,y) = \begin{cases}
1 & 0 \leq y < 1 \\
0 & 1 \leq y
\end{cases} \]
\[f(x,0) = \begin{cases}
1 & 0 \leq x < 1 \\
0 & 1 \leq x
\end{cases} \]

Use complex variable methods to solve the Dirichlet problem on \(\Omega \) with boundary data \(f \).

6. Explain what is meant by "Huygens' Principle". For which dimensions does this principle hold?

7. Suppose the initial temperature in a spherical body of radius \(a > 0 \) is constant at \(U_0 \). For \(t > 0 \) the boundary is kept at temperature 0. Assume heat conduction is governed by

\[u_t = \Delta u \]

where \(u \) is the temperature function. Derive a series representation for the solution of this problem.

8. (a) State the mean value property of harmonic functions in \(\mathbb{R}^n \).

(b) Using the result in (a), state and prove the Maximum Principle for harmonic functions on a bounded domain in \(\mathbb{R}^n \).
(c) Use the Maximum Principle to show that the solution of the Dirichlet problem on a bounded domain Ω in \mathbb{R}^n is unique (if it exists).

(d) Prove that the solution of the Dirichlet problem on a bounded domain Ω in \mathbb{R}^n depends continuously on the boundary condition. Include a careful statement of what this means.

9. (a) Derive the Green function for Dirichlet's problem for the Laplace equation on the upper half-plane in \mathbb{R}^2.
 (b) Use (a) to derive the formula
 \[
 u(x, y) = \frac{x}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi)}{(x - \xi)^2 + y^2} d\xi
 \]
 for the solution of the Dirichlet problem
 \[
 \nabla^2 u = 0 \quad -\infty < x < \infty, \quad 0 < y < \infty
 \]
 \[
 u(x, 0) = f(x),
 \]
 where f is continuous on $-\infty < x < \infty$.

10. Prove uniqueness of solutions for the problem
 \[
 u_{tt} = \alpha^2 \Delta u + f(t, x) \quad \text{for} \quad x \in \Omega, \quad t > 0
 \]
 \[
 u(0, x) = \phi(x), \quad u_t(0, x) = \psi(x) \quad \text{for} \quad x \in \Omega
 \]
 \[
 \tau \frac{\partial u}{\partial n} + \sigma u = 0 \quad \text{on} \quad \partial \Omega,
 \]
 where Ω is a region with smooth boundary in \mathbb{R}^n, ϕ and ψ are C^1 on Ω, and σ and τ are positive constants. (Hint: Use the energy integral
 \[
 E(t) = \int_{\Omega} \left(\tau u_t^2 + \alpha^2 \nabla u^2 \right) dx + \int_{\partial \Omega} \alpha^2 \sigma^2 u^2 ds.
 \]

11. Use Fourier transforms to solve the Cauchy problem for the 1-dimensional heat equation with source term $f(x, t)$,
 \[
 u_t = u_{xx} + f(x, t)
 \]
 \[
 u(x, 0) = \phi(x).
 \]