1. Find the solution of the equation

\[y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0 \]

such that \(u(x, y, z) = xy \) on the plane \(\{z = 0\} \).

2. Give an example of a function in some plane domain \(\Omega \subset \mathbb{R}^2 \) which belongs to \(W^{1,2}(\Omega) \), but does not belong to \(W^{2,2}(\Omega) \).

3. Find all distributional solutions of the equation \(x^2 \frac{d^2 y(x)}{dx^2} = 0 \).

4. Let \(u(x, t) \) be a sufficiently smooth solution of the problem

\[\frac{1}{1 + t^2} u_t - \Delta u = e^u \]

in some region of space-time \(\mathbb{R}^n \times \mathbb{R} \) containing the cylinder

\[Q = \{(x, t) \mid |x| \leq 1, \ 0 \leq t \leq 2\}. \]

Show that the minimum of \(u(x, t) \) in \(Q \) can be attained only on the set

\[\Sigma = \{(x, t) \mid |x| \leq 1 \text{ and } t = 0, \text{ or } |x| = 1 \text{ and } 0 < t \leq 2\}. \]

5. Let \(u(x, t) \) be a 1-periodic in \(x \) finite energy solution of the equation

\[\frac{\partial^2 u}{\partial t^2} + \mu \cdot (1 + t^2) \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \]

where \(\mu \) is a positive constant. [Recall, that ”finite energy” implies that \(u(x, t) \) is a continuous function of \(t \) with values in \(W^{1,2}([0, 1]) \) and \(u_t(x, t) \) is a continuous function of \(t \) with values in \(L^2([0, 1]) \).]
Derive an energy estimate and use it to prove that
\[\int_0^1 |u_t(x, t)|^2 \, dx \to 0 \]
as \(t \to +\infty \).

6. Consider the problem
\[
\begin{cases}
 u_{tt} - u_{xx} + (1 + t^2)u = h(x, t), & -\infty < x < +\infty \\
 u(0, x) = 0, \ u_t(0, x) = 0.
\end{cases}
\]
Show that if \(h(x, t) = 0 \) inside the right triangle \(Q \),
then \(u(x, t) = 0 \) in \(Q \).