COMPLEX VARIABLES QUALIFYING EXAMINATION - Spring 1998
(Bennett and Burckel)

Let \mathbb{R} denote the real line, \mathbb{C} the complex plane, $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, Ω a non-void, open, connected subset of \mathbb{C}, $C(\Omega)$ the continuous \mathbb{C}-valued functions on Ω, $H(\Omega)$ the complex-differentiable function on Ω.

1. Let S be the open square $]0,1[\times]0,1[$ and identify $(x,y) \in \mathbb{R}^2$ with $x + iy \in \mathbb{C}$.

(i) What does it mean for a function $f : S \rightarrow \mathbb{R}^2$ to be \mathbb{R}-differentiable at $(x_0, y_0) \in S$?

(ii) If f is \mathbb{R}-differentiable at (x_0, y_0), what property of its \mathbb{R}-derivative will make f also \mathbb{C}-differentiable at $x_0 + iy_0$?

2. Suppose Ω is starlike with respect to its point a. Show that for every $f \in H(\Omega)$ the companion function F defined by

$$F(z) := \int_{[a,z]} f \quad \forall z \in \Omega$$

is also holomorphic in Ω and satisfies $F' = f$.

3. What is the topology of local uniform convergence in $C(\Omega)$? Is this a metric topology? Show that:

(i) $C(\Omega)$ is complete in this topology.

(ii) $H(\Omega)$ is a closed subset of $C(\Omega)$.

Hint: For (ii) Morera’s theorem is useful.

4. Prove that $f \mapsto f'$ is a continuous mapping of $H(\Omega)$ into itself (in the topology of Problem 3). Give an example of an Ω for which this map is not surjective.

Hint: For the continuity, exploit Cauchy’s integral formula.
5. Show that if \(f \in H(\Omega) \) is one-to-one, then \(f' \) is zero-free in \(\Omega \). Is the converse true?

6. \(h : \mathbb{C} \to \mathbb{R} \) is harmonic and not constant. Prove that \(h \) has a zero.

 \textit{Hint:} If \(h > 0 \) throughout \(\mathbb{C} \), employ Harnack's inequalities.

7. Compute \(\int_{\Gamma} \frac{z^2 + 1}{z^2 - 1} \, dz \), where \(\Gamma \) is the indicated path.

8. The \textit{cross-ratio} of an ordered quadruple of distinct complex numbers is \([z_1, z_2, z_3, z_4] := \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_4)(z_3 - z_2)} \). Show that \([z_1, z_2, z_3, z_4] = [w_1, w_2, w_3, w_4] \) if and only if there is a Möbius transformation (i.e., a linear fractional transformation) that maps each \(z_j \) to \(w_j \).

9. Suppose \(\sum_{n=0}^{\infty} c_n z^n \) has radius of convergence 1. Show that the function \(f(z) := \sum_{n=0}^{\infty} c_n z^n \) which it defines in \(\mathbb{D} \) is holomorphic. Can you find such an \(f \) which can be continuously extended to \(\overline{\mathbb{D}} \)? Disprove or give an example.

10. Prove that the zeros of a non-constant polynomial depend continuously on its coefficients in the following sense: Given \(P(z) = c_0 + c_1 z + \ldots + c_n z^n \) (\(n > 0, c_n \neq 0 \)) whose (distinct) zeros are \(z_1, \ldots, z_r \) and given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that whenever complex numbers satisfy \(|b_j - c_j| < \delta \) for all \(j \), the polynomial \(Q(z) := b_0 + b_1 z + \ldots + b_n z^n \) will have at least one zero in each of the disks \(D(z_j, \varepsilon) := \{ z \in \mathbb{C} : |z - z_j| < \varepsilon \} \) and all its zeros in the union \(\bigcup_{j=1}^{r} D(z_j, \varepsilon) \) of these disks.