In what follows \(\mathbb{R} \) is the real numbers, \(\mathbb{C} \) the complex numbers, \(\mathbb{D} \) the open unit disc centered at 0 and \(\mathbb{T} \) the boundary of \(\mathbb{D} \). The set of functions holomorphic in \(\Omega \) is denoted \(H(\Omega) \).

1. Let \(f \) be a continuous function on \(\mathbb{D} \) which satisfies \(\int_{\Delta} f = 0 \) for each triangle \(\Delta \subset \mathbb{D} \) such that one side on \(\Delta \) lies on \(\mathbb{R} \) and another side of \(\Delta \) is parallel to \(i\mathbb{R} \). Show that \(f \) is holomorphic.

2. Prove that \(1/z \) is not uniformly approximable on \(\mathbb{T} \) by polynomials in \(z \).

3. Let \(\Omega \) be a region in \(\mathbb{C} \), \(f \in H(\Omega) \setminus \{0\} \), \(n \) a positive integer. Suppose that \(|z|^n f(z) \) attains a maximum over \(\Omega \) at some point of \(\Omega \). Show that \(0 \in \Omega \).

4. Prove that for all \(z \) in the open right half-plane \(\mathbb{H} \) the integral \(\int_1^\infty e^{-t} t^{z-1} dt \) exists and defines a holomorphic function of \(z \in \mathbb{H} \).

5. (i) If \(f \) is holomorphic in a neighborhood of \(\mathbb{D} \), then
 \[
 |f(z)| \leq \frac{1}{\sqrt{1 - |z|^2}} \left[\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta \right]^{1/2} \forall z \in \mathbb{D}.

 (ii) Use (i) to draw the same conclusion in case \(f \) is only continuous on \(\mathbb{D} \), holomorphic in \(\mathbb{D} \).

6. \(f \) and \(g \) are each holomorphic in a neighborhood of 0, \(f(0) = 0 \) with multiplicity \(m \), \(g(0) = 0 \) with multiplicity \(n \). What is the multiplicity of 0 as a zero of \(f \circ g \)?

7. (i) Use the function \(f(t) := e^{it}, t \in [0,2\pi] \), to show that the Mean-Value Theorem of differential calculus fails (generally) for complex-valued functions.

 (ii) Prove that, in spite of (i), if \(F \) is holomorphic in a convex region \(\Omega \) and \(|F'| \leq M \), then
 \[
 |F(z_2) - F(z_1)| \leq M |z_2 - z_1| \forall z_1, z_2 \in \Omega.

8. Let \(\Omega \) be a bounded region in \(\mathbb{C} \), \(f : \overline{\Omega} \to \mathbb{C} \) a continuous non-constant function which is holomorphic in \(\Omega \) and maps \(\partial \Omega \) into \(\mathbb{T} \).

 (i) Show that \(0 \in f(\Omega) \).

 (ii) Show that \(f(\Omega) = \mathbb{D} \).

 Hint: To get “\(\supset \)”, apply (i) to \(\phi \circ f \) for certain holomorphic maps \(\phi \) of \(\mathbb{D} \) into \(\mathbb{D} \).

9. \(f \) is continuous on \(\overline{\mathbb{D}} \), holomorphic in \(\mathbb{D} \) and \(\text{diam} f(\mathbb{T}) \leq 1 \). Show that \(\text{diam} f(r \mathbb{T}) \leq r \) for each \(0 \leq r \leq 1 \).

 Hint: \(\text{diam} f(r \mathbb{T}) := \max \{|f(ru_1) - f(ru_2)| : u_1, u_2 \in \mathbb{T} \} \). If this is achieved at \(u_1, u_2 \) consider the holomorphic function \(F(z) := f(zu_1) - f(zu_2) \).

10. \(h : \mathbb{C} \to \mathbb{R} \) is harmonic and non-constant.

 (i) Prove that \(h \) is not bounded above.

 (ii) Prove that \(h \) is not bounded below.

 (iii) Prove that \(h(\mathbb{C}) = \mathbb{R} \).