1. Let U be open $\subset \mathbb{C}$, $a \in U$, f holomorphic in $U\{a\}$.

 (i) What does it mean to say f has a pole at a?

 (ii) Show that if a is a pole, then $f(U\{a\})$ is a “neighborhood of ∞", that is, its complement in \mathbb{C} is compact.

 HINT: Consider $1/f(z)$ for z near a.

 (iii) Suppose f has a simple pole at a. Prove that

 $$ \lim_{r \to 0} \int_{\gamma_r} f(z)dz = i\pi \text{Res}(f,a), $$

 where $\gamma_r(t) := re^{it} + a$ for $r > 0$ and $0 \leq t \leq \pi$.

2. The holomorphic function f has an isolated singularity at z_0 and for some $a, M \in \mathbb{R}$ satisfies

 $$ |f(z)| \leq M|z-z_0|^a $$

 near z_0. Show that

 (i) z_0 is a removable singularity if $a > -1$ and

 (ii) if a satisfies $-n < a \leq -1$ for some $n \in \mathbb{N}$, then z_0 is a pole of order at most $n - 1$.

 HINT: Use the Cauchy estimates.

3. Suppose $\int_\gamma f = 0$ for all piecewise smooth loops γ in a region Ω and for all holomorphic functions f in Ω. Show how to construct a holomorphic logarithm for any given zero-free holomorphic function in Ω.

4. Explain why the identity function $f(z) := z$ has no holomorphic logarithm in $\Omega := \{z \in \mathbb{C} : 0 < |z| < 1\}$.

5. Ω is an open subset of \mathbb{C} and $f: \Omega \to \mathbb{C}$ satisfies $e^{f(z)} = z$ for all $z \in \Omega$ and is continuous on Ω. Show that f is in fact holomorphic in Ω.

6. f is holomorphic by not constant in a neighborhood of a and $f(a) = 0$. Show that a must be an isolated zero; that is, if $r > 0$ is small enough, f has no zero in $\{0 < |z-a| < r\}$.

 HINT: Look at the Taylor series of f at a.

7. (i) The entire function f satisfies

 $$ z^{-n}f(z) $$

 is bounded for some $n \in \mathbb{N}$.

 Show that f is a polynomial of degree no greater than n.

 HINT: Cauchy estimates.

 (ii) The entire function F satisfies

 $$ |F(z)| \to \infty \text{ as } |z| \to \infty. $$

 Show that F is a polynomial.

 HINT: F has only finitely many zeros (proof?). So for an appropriate polynomial $P, f := P/F$ satisfies the hypothesis of (i) and it has no zeros.