Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. Note: All rings in this exam are associative and with 1 and all integral domains are commutative.

1. Let G be a finite abelian group.
 (a) State what it means for G to be an elementary abelian p-group, where p is a prime number.
 (b) If G is an elementary abelian p-group, explain fully in what sense can G be regarded as an \mathbb{F}_p-vector space, where \mathbb{F}_p is the field of p elements.

2. Let $G = \langle x, y \rangle$ be a finite group, where x, y are involutions. Prove that G has a normal subgroup of index 2. (Look at $H = \langle xy \rangle$.)

3. Let G be a group acting on the set Ω. Assume that $\omega \in \Omega$, set $H = \text{Stab}_G(\omega)$, and assume that K is a subgroup of G acting transitively on Ω. Prove that $G = KH$.

4. Let R be a commutative ring and assume that M, M_1, M_2, \ldots, M_r are maximal ideals of R with $M_1M_2 \cdots M_r \subseteq M$. Prove that for some i, $M_i = M$.

5. Let $R = \{\frac{a}{b} \in \mathbb{Q} \mid 2 \nmid b\}$, a subring of the rational number field \mathbb{Q}. Show that R has a unique maximal ideal, and find it.

6. Let R be a ring and let M be an R-module. Assume that $M_1, M_2 \subseteq M$ with $M = M_1 \oplus M_2$. Prove or give a counterexample to the assertion: If $N \subseteq M$ is a submodule, then
 \[N = N \cap M_1 \oplus N \cap M_2. \]
7. Let $\alpha = \sqrt{2} + \sqrt{2} \in \mathbb{C}$. Given that $m_{\alpha, \mathbb{Q}}(x) = x^4 - 4x^2 + 2$, and that the roots of $f(x) = m_{\alpha, \mathbb{Q}}(x)$ are $\alpha = \alpha_1 = \sqrt{2} + \sqrt{2}, \alpha_2 = -\sqrt{2} + \sqrt{2}, \alpha_3 = \sqrt{2} - \sqrt{2}, \alpha_4 = -\sqrt{2} - \sqrt{2}$, answer the following:

(a) Compute the degree of the splitting field \mathbb{K} over \mathbb{Q} of $f(x)$.
(b) Show that the Galois group $\text{Gal}(\mathbb{K}/\mathbb{Q})$ is cyclic.

8. Let $\mathbb{F} = \mathbb{F}_q$ be the finite field of $q (= p^r)$ elements, where p is prime, and let $\mathbb{K} = \mathbb{F}_{q^3} \supset \mathbb{F}$. Say that elements $\alpha, \beta \in \mathbb{K}$ are equivalent if they have the same minimal polynomial over \mathbb{F}. Clearly this is an equivalence relation on \mathbb{K}. Compute the number of equivalence classes in \mathbb{K} as a function of q. (Hint: this is extremely easy.)

9. Let $T : V \to V$ be a linear transformation on a finite dimensional vector space over the field \mathbb{F}. Suppose that T has the following invariant factors:

$$1 + x, \ x^2(1 + x), \ x^2(1 + x)(1 + x + x^2).$$

Answer the following questions:

(a) What is $\dim_{\mathbb{F}} V$?
(b) Is T injective?
(c) What is the minimal polynomial of T
(d) Does T have a Jordan canonical form over \mathbb{F} with respect to an appropriate basis of V? (If this depends on the field give an example of a field \mathbb{F}, for which the answer is “yes,” and find the Jordan canonical form.)

10. Let \mathbb{F} be a field. If V is a finite-dimensional \mathbb{F}-vector space and if $T : V \to V$ is a linear transformation, we have the notion of minimal polynomial $m_T(x) \in \mathbb{F}[x]$ of T. Likewise, if $\mathbb{K} \supset \mathbb{F}$ is a finite field extension, and if $\alpha \in \mathbb{K}$, then we also have the notion of minimal polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$ of the field elements α. These notions of minimal polynomial share many similarities except that $m_{\alpha}(x)$ is always irreducible, whereas $m_T(x)$ need not be irreducible. Prove this.