Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. Note: All rings in this exam are associative and with 1 and all integral domains are commutative. \(\mathbb{Z} \) and \(\mathbb{Q} \) are the sets of the integers and rational numbers respectively.

1. Let \(G \) be a finite group and \(p \) be the smallest prime divisor of \(|G| \). If \(H \) is a subgroup of \(G \) of index \(p \) in \(G \), show that \(H \) is a normal subgroup.

2. Let \(p \) and \(q \) be prime numbers. Show that any group of order \(p^2q \) is solvable.

3. Let \(D = \mathbb{Z}[i] \), the ring of Gaussian integers. Compute the order of the quotient ring \(D/(1+2i)D \).

4. Let \(f : R \rightarrow S \) be a homomorphism of rings, and let \(I \subseteq R \) be an ideal. Is it true that \(f(I) \) is an ideal of \(S \)? Prove, or give a counterexample. What if \(f \) is assumed to be surjective?

5. Let \(B \) be a ring. An ideal \(I \) of \(R \) is called nilpotent if there exists a positive integer \(n \) such that \(I^n = 0 \) (\(I^n = II \cdots I \)). Show that \(IM = \{0\} \) for any simple \(R \)-module \(M \).

6. Let \(R \) be a ring and \(M \) an (left) \(R \)-module. An element \(m \) in \(M \) is called a torsion element if \(rm = 0 \) for some \(0 \neq r \in R \). Let \(M_t \) be the set of all torsion elements in \(M \). Show that, if \(R \) is an integral domain, then \(M_t \) is an \(R \)-submodule and the quotient module \(M/M_t \) has no torsion elements other than 0.
7. Let V be a finite dimensional vector space over an algebraically closed field F and $T : V \to V$ be a linear transformation. For each $a \in F$, we define $V_a = \{ v \in V \mid (T - aI)^n v = 0 \text{ for some positive integer } n \}$, which is a T-invariant subspace of V. Here I is the identity linear transformation. Show the following:

(a). $V_a \neq \{0\}$ if and only if a is an eigenvalue of T.

(b). Let Π be the set of all eigenvalues of T. Then $V = \oplus_{a \in \Pi} V_a$.

8. Let V be a finite dimensional vector space over a field F and $A, B : V \to V$ be two commuting linear transformations. If both A and B are diagonalizable, then there exists a basis of V such that both A and B have diagonal matrices with respect to this basis.

9. Let E be the splitting field $f(x) = (x^3 - 2)(x^2 + x + 1)$ over \mathbb{Q}. Compute the Galois group $\text{Gal}(E/\mathbb{Q})$.

10. Let E be the splitting field of $f(x) = x^5 - 2$ over the field \mathbb{F}_5, the field of 5 elements. Is E a Galois extension over \mathbb{F}_5? Justify your answer. If your answer is “yes”, compute the Galois group.