ALGEBRA QUALIFYING EXAM

Do at least eight problems with at least two from each of the four sections.

Group Theory

1. Let \(\phi: G \rightarrow H \) be a surjective homomorphism of groups, and let \(K = \ker \phi \). If \(H_1 \) is a subgroup of \(H \) show that there is a unique subgroup \(G_1 \) of \(G \) such that
 (i) \(K \leq G_1 \),
 (ii) \(\phi(G_1) = H_1 \).

2. Let \(G \) be a group of order 56. Show that either
 (i) a 2-Sylow subgroup is normal, or
 (ii) a 7-Sylow subgroup is normal.
 (Extra credit: Give examples of groups \(G_1, G_2 \) of order 56 such that a 7-Sylow subgroup of \(G_1 \) is not normal and a 2-Sylow of \(G_2 \) is not normal.)

3. Let \(P \) be a finite \(p \)-group (\(p \) is prime), and let \(H \) be a proper subgroup of \(P \). Show that \(\ker(\phi) \varsubsetneq H \).

4. Prove that no group can be written as the union of two proper subgroups. Give an example of a group which is a union of three proper subgroups.

5. Let \(A \) be an abelian group with generators \(a, b \) and relations \(2a - b = 0 \), \(-a + 2b = 0 \). Compute the structure of \(A \).

6. Let \(G \) be the group with presentation \(\langle a, b | a^2 = b^3 \rangle \). Show that \(G \) is infinite. (Hint: This is not hard at all! Let \(G_0 \) be the subgroup of \(GL(2, \mathbb{Z}) = 2 \times 2 \) nonsingular matrices with integer entries, generated by \(a_0 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \), \(b_0 = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \). Show that \(a_0, b_0 \) satisfy the given relation, and that \(G_0 \) is infinite.)
Rings and Modules

1. Let \(\phi: R_1 \to R_2 \) be a homomorphism of rings.

 a) If \(I_2 \) is an ideal of \(R_2 \), show that \(\phi^{-1}(I_2) \) is an ideal of \(R_1 \).

 b) If \(I_1 \) is an ideal of \(R_1 \) show by example that \(\phi(I_1) \) need not be an ideal of \(R_2 \).

2. Prove that "Chinese Remainder Theorem": If \(n \) is a positive integer with \(n = ab \), \(a \) and \(b \) relatively prime, then there is an isomorphism of rings

 \[
 \frac{\mathbb{Z}}{(n)} \cong \frac{\mathbb{Z}}{(a)} \times \frac{\mathbb{Z}}{(b)}.
 \]

3. Let \(R \) be a ring and let \(M \) be a left \(R \)-module. Let \(\text{Ann}(M) = \{ r \in R | rM = 0 \} \) be the annihilator of \(M \).

 a) Show that \(\text{Ann}(M) \) is a 2-sided ideal of \(R \)

 b) If \(M \) is irreducible, and if \(R \) commutative, show that there is an isomorphism of \(R \)-modules

 \[
 \frac{R}{\text{Ann}(M)} \cong M
 \]

4. Let \(R \) be an integral domain such that every ideal of \(R \) is free. Prove that \(R \) is a principal ideal domain.

5. Let \(R \) be a ring and let \(M \) be a left \(R \)-module. Prove the so-called Noether isomorphism theorem: if \(M_1, M_2 \) are \(R \)-submodules of \(M \) then

 \[
 \frac{M_1 + M_2}{M_2} \cong \frac{M_1}{M_1 \cap M_2}.
 \]

 (Hint: Map \(M_1 \to \frac{M_1 + M_2}{M_2} \) in the more or less obvious way.

 Is the map surjective? What is the kernel?)
Linear Algebra

1. Let F be a field, and let V be a vector space over F.
 a) Define what it means for a subset $S \subseteq V$ to be a basis.
 b) Using Zorn's lemma, show that any vector space has a basis.

2. Let $\{v_1, \ldots, v_n\}$ be a basis for the vector space V over F.
 If $w \in V$ satisfies $w \notin \langle v_2, \ldots, v_n \rangle$ (where $\langle \rangle$ means F-span), show that $\{w, v_2, \ldots, v_n\}$ is a basis.

3. Let $T: V \to V$ be a linear transformation such that $T^2 = T$.
 Prove that the subspaces TV and $(I - T)V$ are T-invariant
 and that $V = TV \oplus (I - T)V$.

4. Give an example of a matrix A with rational entries such that
 minimal polynomial $= (x + 1)^2(x^2 + 1)^2(x^4 + x^3 + x^2 + x + 1)$,
 characteristic polynomial $= (x + 1)^3(x^2 + 1)^3(x^4 + x^3 + x^2 + x + 1)$

5. Let $T_1, T_2 : V \to V$ be linear transformations, where V is a
 finite dimensional vector space over an algebraically closed
 field. If $T_1 T_2 = T_2 T_1$, prove that there exists a vector
 $v \in V$ which is an eigenvector for both T_1 and T_2.

Fields and Galois Theory

1. Let $F \subseteq K$ be fields and let $a \in K$.
 a) State what it means for a to be algebraic over F.
 b) Prove that a is algebraic over F if $F(a)$ is a
 finite dimension F-vector space.

2. Let F be a finite field, and let F^* be the non-zero elements
 of F, regarded as a multiplicative group. Show that F^* is a
 cyclic group. (Hint: If $e =$ exponent of F^*, how many roots
 in F are there to the polynomial $x^e - 1$?)

3. Let $\sqrt[3]{2}$ be a real cube root of 2, and let ζ be the complex
 number $\zeta = \exp(\frac{2\pi i}{3})$. Let $K_1 = \mathbb{Q}[\sqrt[3]{2}]$, $K_2 = \mathbb{Q}[\zeta]$,
 $K_3 = \mathbb{Q}[\sqrt[3]{2}, \zeta]$. Prove that K_1 is not normal over \mathbb{Q} but
 that K_2, K_3 are normal over \mathbb{Q}.
Let $F \subset K$ be a separable normal extension of F_1 and let G be the Galois group of the extension. Let H be a subgroup of G and let L be the field of invariants of H, i.e., $L = \{ a \in K \mid ha = a \text{ for all } h \in H \}$. Without using the fundamental theorem of Galois theory, prove that L is normal over F if and only if H is a normal subgroup of G.