Professor S.T. Parker died at his home in Manhattan on March 14, 1990, after a brief illness. He joined the Department of Mathematics in 1947 as an assistant professor and retired in 1982 after 35 years of service.

Professor Parker was a native of British Columbia. He received his B.A. in 1931 and M.A. in 1934, both from the University of British Columbia. He was a graduate student and assistant astronomer at Brown University in 1937-38 and 1940-41. In 1939 he was a student at the University of Chicago and in 1946-47 was a Taft Fellow at the University of Cincinnati, where he received his Ph.D. in mathematics in 1947.

He began his teaching career in the high schools of British Columbia, where he taught from 1933 to 1937.

Parker was an instructor at Hobart College from 1938 to 1942 and assistant professor at the University of Louisville from 1942 to 1946. He was appointed assistant professor of mathematics at K-State in 1947 and promoted to associate professor in 1948 and professor in 1951.

Professor Parker came to K-State as the transition from agricultural college to broadly based university was getting under way. He was privileged to have the opportunity to make significant contributions to that process.

Throughout his career Parker was a dedicated teacher and an energetic seeker of new knowledge. Helping students learn was always paramount for him. He became interested in computing when the subject was in its infancy, and he was instrumental in the development of the computing capability on the K-State campus.

Chaucer in his description of the Clerk of Oxford in the prologue to The Canterbury Tales wrote "And gladly would he learn, and gladly teach." This characterizes, too, Parker's career as a teacher and life-long learner. During his years at K-State he taught hundreds of students and directed many graduate theses. The high regard which his students had for him was evidenced by alumni who upon their return to the campus always sought him out to express their appreciation for the time they had spent in class together.

During the late 1940s university faculty and students everywhere were just beginning to learn about the computer and the possibilities that computing promised for both teaching and research. Very few computers were in existence and there were not many opportunities for students and faculty to learn to use them.

Professor Parker became interested in the potential of this new development and spent several summers learning about computing at a federal agency in Maryland where one of the first computers had been installed.

Over the next several years he continued to develop this interest in computing and to explore ways that K-State could provide computing services to faculty and students. In 1957 he was appointed director of K-State's Computing Center with the responsibility for acquiring computing equipment and for teaching faculty and students both the potential of the computer and the techniques for using it.

The first computing equipment was an IBM 650 located in Seaton Hall. This was the modest beginning of a revolution in both teaching and research as this powerful tool became widely available and used on the campus.

Parker made a significant contribution to the development of Kansas State as he implemented the introduction of computers to the campus. He retired from the position of director in 1968 when he returned to full-time teaching in the Department of Mathematics.

Parker's professional memberships included the American Mathematical Society, the Mathematical Association of America, the Kansas Association of Teachers of Mathematics, Sigma Xi, Pi Mu Epsilon, the Society of Industrial and Applied Mathematics, and the Association of Computer Machinery. He was an active member of the Manhattan Lions Club and the KSU Wranglers. He was an organizer and active participant in the Faculty Bowling League and was known for this skill as a tennis player.

Parker's early research centered on continued fractions, convergence factors, and summable integrals. As his interest in computing grew he became active in the fields of numerical methods, recurrence relations, and digital computing.

In 1935 Parker married Elsie Eccles, who resides at their home, 412 Ehlers Road, Manhattan. They have two sons, Jim of Topeka and David of Salisbury, Maryland.

By Paul M. Young
Eugene Hughes was awarded the 1990 Distinguished Alumnus Award for the Department of Mathematics. He is president of Northern Arizona University in Flagstaff, Arizona, a position he has held since 1979, having previously held the posts of dean, provost, and academic vice president. He received an M.A. in mathematics from Kansas State University in 1958 and earned a Ph.D. in education from the George Peabody College of Vanderbilt University in 1968. He gave a talk entitled "Administration: Life on the Fast Lane of a Mobius Strip" at the 1990 Friends of Mathematics banquet and was interviewed the next day by Andrew Bennett.

AB: I think we don’t really know what college presidents do. What’s your day taken up with as a college president?

EH: A variety of activities. I spend, I would say, probably half my time dealing with the legislature and the political process, securing the funds for the faculty; working on long-range planning for the institution; dealing with the various vice presidents. An inordinate amount of time is spent on intercollegiate athletics, even at an institution like ours, trying to keep some sanity in the program and trying to keep the budget balanced, which is not an easy task with the Division 1 program.

I try to maintain contact with students through student government, faculty through the faculty senate. And then there are a variety of commissions and task forces that I have appointed. As examples, I have a task force on the status of women, a Hispanic task force, a task force on African-Americans, and then some major efforts related to American Indians. Our university is, I think, now the third largest enrollee of American Indians of any institution in the country. We’re developing some programs which enable us to work with the Native American tribes on site to do education, economic development, and human resources development. I would say today we probably have 100 different projects underway. As an example, with the Hopi Indians, we’re managing one of their school systems and recently the Bureau of Indian Affairs has suggested that maybe we could manage the entire school system.

So that’s a major component of my institution, but I also have concern for assessment of the quality of life, and the quality of instruction on campus. So I compare my position to a symphony orchestra. I’m sort of like the conductor, and I have all these various components, alumni, faculty, staff, legislators, and I’m trying to orchestrate all of those for the betterment of the institution.

In some respects we’re like a small community, and I’m the mayor. We have 6,000 students who live on our campus, so I have to worry about food service and housing, cultural activities, athletics, as well as the primary purpose which, of course, is education. We have a large capital construction project on campus. Within the last year and this one we will have had $60 million worth of buildings being constructed, and the regents hold me accountable for knowing everything that is going on there as well. So it includes visits to construction sites and continuing dialogue with the vice president who really watches that sort of thing. So on any given day you might be dealing with any or all of these topics.

AB: You mentioned athletics. From the viewpoint of a university president, what do you think should be done or needs to be done with intercollegiate athletics in this day and age?

EH: Well, I really think that most of us have a responsibility to bring a state of sanity back to intercollegiate athletics. I think we’ve lost sight of what the true purpose of the athletic program is. It is to provide entertainment. It’s also to provide opportunities for development of human beings in different ways. And I think that the large programs in the country that are more concerned with making money and with preparing professional athletes have lost sight of that.

Somehow we have to bring back the sanity that used to exist when people played for fun. I, for one, am working, and did when I was a member of the President’s commission of the NCAA, to try to do that. I was not very successful because the presidents and chancellors of the large powers like Oklahoma, Nebraska, and Kentucky all hold sway. The pressures in their states for them to have those championship teams and bring lots of money to the institution hold sway.

I think in the future what you’re going to see is a few institutions that will play at the level that some of the Big 8 and PAC 10 play at today. But I think increasingly we’ll go more to the philosophy of old, where you have people playing for fun, and a reduction in the number and the amount of scholarships, and perhaps even the travel. Otherwise we cannot afford to do what we are doing.

Eugene Hughes

AB: How about the way the student athletes are treated today?

EH: Well, I know what happens at some institutions. Ours aren’t treated any differently than any other students; if anything, they are treated more severely. As an example, if they have difficulty on campus or even in the community, the code of conduct for student athletes is stricter than for the general student body. The reason for this is that we feel they’ve become the highly visible people on the campus, and if, in fact, they get in some kind of trouble, we should deal with them more harshly.

AB: You are very interested in education and that comes through any time anyone talks to you, I think. What ought the role of universities be in education at the pre-college level?

EH: Well, I think that we really need to develop means in which we work directly with the school systems throughout our states. As an example, in 1984 I abolished our traditional college of education and approved what the board and legislature have recognized as a center for excellence in education. It has a matrix administrative structure so that we can have faculty come in from various disciplines to work with faculty whose profession is education.

Our center for excellence is set up like the ag-extension service at K-State. We have 10 sites throughout the state of Arizona and at each site, instead of a county agent, we have an educational agent. That person becomes a broker of services between the school district and the university. In all cases we’re working directly with the schools.
In our program for preparation of elementary teachers we now take 25-30 sophomores to a school, and they stay in that school for a semester, working half days with the teachers in the school, lower and upper elementary levels. On the other half days our faculty go to the school and work with those people right on site. So they are being totally immersed from the very beginning and hopefully they will begin to feel what it takes to be a real teacher: to really produce on site and not just earn their paycheck.

As for working with minorities, unless we help to fill that pipeline, we’re never going to have minorities at university level. And I would say the same thing about mathematics. Unless we can get into the elementary schools and the high schools to work with teachers to help share quality, then we’re going to continue the mathematical illiteracy I was talking about last night.

AB: What do you see as the big problems in elementary education?

EH: I think there are a couple of problems. One of those, about which I’ve been convinced forever, is the ability to read. I think the ability to read and the ability to succeed in mathematics go hand in hand, because you have to be able to analyze what you’re reading and formulate equations and solutions.

But I think what we’ve had for too long is elementary school teachers who have had a fear of mathematics. Therefore they just skim the surface, or they really don’t apply mathematics to the real world. And until that changes, until you get a cadre of teachers at the elementary level who are strong in mathematics, I think we’ll continue to have students who shy away from math in junior high and high school. And then ultimately, of course, at the university level, we have very few math students.

AB: One of the problems we find here teaching the prospective elementary school math teachers is that you get an incoming class that is very weak in mathematics and is prepared to hate the subject. And you have a hard time balancing the need to push them a lot to get them up to the background that they need and at the same time, to make something they enjoy. They come in prepared to dislike the subject and you have to be very gentle with them in order for them not to say “oh, I just hate this subject,” and pass that on to their future students. Pushing them hard to get them to learn what they need contradicts being gentle with them.

EH: It really does.

AB: We haven’t found a good way around it yet.

EH: I don’t think you have a good way. And I think it’s going to take an effort with them as they are coming through the school system to really make a change. It’s hard to change people once you get them to a university.

AB: You’re also active in minority education. And particularly in Native American education. Is that just a matter of going out and making contact? Or does dealing with the different cultures require a different approach?

EH: It requires a different approach. Every tribe that we’re dealing with is different. And within tribes, clans are different. It’s a very complex issue to deal with, but I’ve made a commitment to work with American Indians. I think that we have an opportunity to be a regional center or national center for American Indians. It takes a great deal of time and energy, but I think we’re uniquely situated to do that. And philosophically, the faculty has bought into that concept.

We have just signed an agreement with the Navajo Community College whereby we’re working with them in terms of helping them focus in on their curriculum. We’re helping them with all their systems—computer systems and business systems—because they’ve been struggling for about 30 years now, and they really need some help. I loaned them a president from my staff. I said I would loan him only on the condition that they let him have all the consultant help he needed from us, and that’s working well.

So I think we’ll begin to have a pipeline of two year graduates coming on to the university who have had a sound educational background. That’s not been true in the past.

AB: Was there anything else we haven’t touched on that you would like to?

EH: Not that I can think of. It’s been a pleasure to be back. It was very interesting to see the changes that have taken place here, both in terms of facilities and program, and the community. Bill Stamey took me out this morning and we looked around a bit. It’s really changed a lot since I was here.

As a matter of fact, I found out that the old Rock Island Railroad is not even here any longer. It’s now your loop around town. My trailer house was located about 6 feet from that Rock Island line, between it and the Union Pacific.

AB: It must have been noisy . . .

EH: Oh, it was very noisy. When they’d blow that whistle as they’d come through, I’d about jump out of bed. But it’s a sign of progress.

Muenzenberger receives teaching award

Thomas Muenzenberger, associate professor of mathematics, was one of four faculty to be awarded the 1990 Conoco Excellence in Teaching Awards. These awards are given every spring to three to five outstanding teachers among the more than 2,000 K-State faculty members.

Muenzenberger’s award was the first time in two years that a member of the Division of Arts and Sciences received the award and the first time in the over twenty year history of the award that a member of the mathematics faculty received it. The award includes a $1,000 stipend.

The citation accompanying the award mentioned Muenzenberger’s role in developing the Freshman Mathematics Seminar, the graduate teaching assistance training program, and the undergraduate grading and help session program.

"He has contributed to a significant increase in the retention of students in mathematics service courses. He advises the department’s Putnam team, which ranked in the top 15 percent in a national mathematics competition.

"Professor Muenzenberger’s leadership in undergraduate education and his excellence in teaching have earned him the respect of his colleagues, students, and the University community."

He has been at K-State since 1973.
Fields Medalist presents Dressler Lecture

Enrico Bombieri of the Institute for Advanced Study in Princeton, New Jersey, presented the fifth Isidore and Hilda Dressler Lecture on November 20. He is currently holder of the IBM-Von Neumann Chair in Mathematics. Professor Bombieri has made many contributions to mathematics, particularly in the fields of number theory and algebra. In 1974 he received the Fields Medal, the highest prize awarded by the International Mathematical Union.

The title of his lecture was Solving $f(x,y) = 0$ in Rational Numbers and Integers: What We Know and What We Don’t Know.

The most famous problem in Diophantine analysis (that is solving $f(x,y) = 0$ in rational numbers and integers) is that of finding Pythagorean triples. These are triples of integers (a,b,c) such that $a^2 + b^2 = c^2$. General techniques for solving this problem were known as far back as 1700 B.C. This question is equivalent to the question of finding all rational pairs (x,y) with $x^2 + y^2 = 1$ (let $x = a/c$ and $y = b/c$).

Bombieri presented a geometric method of finding all solutions to this problem. The set of points in the plane satisfying $x^2 + y^2 = 1$ is the unit circle, of course. We now wish to find all points on the unit circle with rational coordinates. Consider a line passing through the points $(0,-1)$ and $(r,0)$ where r is any rational number (see figure).

This line has equation $y = rx - 1$, and it intersects the unit circle at solutions to this pair of equations:

$y = rx - 1$

$x^2 + y^2 = 1$

This pair has two solutions, as can easily be seen graphically. One solution is $(0,-1)$.

But it is not possible for a system of polynomial equations with rational coefficients to have exactly one irrational solution. So the second solution must also be rational, which then gives us a rational solution to $x^2 + y^2 = 1$. Every rational point on the circle can be found in this fashion and solving the system algebraically yields a formula for Pythagorean triples.

With this simple example as a starting point, Bombieri discussed several other situations where the interplay of geometric and algebraic techniques yields insight into Diophantine problems. He ended by discussing the various advances made recently on Fermat’s last problem, that $a^n + b^n = c^n$ has no non-trivial solutions for $n > 2$. It is now known that for any $n > 2$, there are at most finitely many non-trivial relatively prime solutions.

The Isidore and Hilda Dressler lecture series was established by a gift from Robert and Leona Dressler to the Kansas State University Foundation. The gift honors Hilda Dressler and the memory of Isidore Dressler, and the interest on the endowment provides funds for annual lectures to be given by internationally prominent mathematicians.

The lecture series emphasizes mathematics as a foundational discipline for science, commerce, and the arts. The lectures also underscore the fact that mathematics is a creative field and that mathematical research is a response both to the needs of other sciences and to its own inner dynamic which compels the study of abstract patterns. Previous lecturers in the series include Daniel Gorenstein, Hugh Montgomery, John H. Conway, and Wolfgang Schmidt.

Grant to aid science teaching

American school children seem to start out curious about the world. Then, teachers notice, many just lose interest in science, math and technical subjects before they enter high school.

That phenomenon has teachers puzzled and worried about how well today’s children, as adults, will function in the ultra high-tech society of the next century.

One way to improve scientific literacy might be to introduce scientific subjects much earlier in the curriculum and teach them differently. The National Science Foundation has awarded a $1.67 million five-year grant to researchers at Kansas State University to design a new model of elementary-level science teaching.

A large interdisciplinary team of KSU scientists from the College of Education and the College of Arts and Sciences will be working jointly with elementary classroom teachers from the Manhattan-Ogden school district. This is the only program of its kind in the nation.

The grant’s purpose is to create a model program to train elementary teachers for enhanced science, mathematics, and technology teaching.

Project directors are: from the KSU College of Education, Emmett Wright and Gail Shroyer; from the KSU College of Arts and Sciences, mathematician Bill Parker and physicist Dean Zollman; and Nancy Thompson, director of elementary education for the USD 383.

According to Wright, this will be a focused, interdisciplinary effort to train elementary school leaders for the 21st century.

“As a thorough understanding of science math and technology becomes more valuable for all citizens, there will also be a critical need for teachers who have the insights and skills for leading the new programs,” Wright said.

The model teacher-training program will include 27 credit hours of science, mathematics, and technology content designed for elementary teachers, eight credits of educational methods, and early and continuous field experience in the elementary classes.

Amanda Arnold, Lee, and Woodrow Wilson elementary schools will be the sites for student-teacher field experiences. Twenty-five master teachers and three clinical instructors from these schools will supervise students and help develop the new courses and the field experiences.

Approximately 25 first- and second-year education elementary students who show high interest in math and science will be chosen.

By Kay Garrett

K-State hosts conferences

The Department of Mathematics hosted three conferences in the spring of 1990.

The first of these was the 85th meeting of the American Mathematical Society on March 16 and 17. Invited one-hour addresses were given by Brian Conrey of Oklahoma State, Stewart Priddy of Northwestern, and Jang-Mei Wu of Illinois at Urbana-Champaign. In addition, the peripatetic mathematician Paul Erdos gave a one-hour talk to fill in for a fourth speaker who could not attend.

Over the two days, there were eleven special sessions at which research papers were presented. Cardwell Hall buzzed with mathematical discussions among the 248 mathematicians who registered for the conference.

Two weeks later, the Kansas section of the other national academic mathematical organization, the Mathematics Association of America, also held meetings in Cardwell Hall. The MAA, which is oriented more towards teaching than research, held joint sessions with the Kansas Association of Teachers of Mathematics on March 30 and 31. Among the speakers were several undergraduate and graduate students from K-State.

An international research conference was hosted by K-State from May 21 through 25. The conference was funded by the National Science Foundation, the National Security Agency, the Isidore and Hilda Dressler Endowment for the Enrichment of Mathematics through the KSU Foundation, and K-State. Renowned mathematician Hugh Montgomery of the University of Michigan delivered a series of ten lectures on “The Interface between Analytic Number Theory and Harmonic Analysis.” His lectures provided a survey of the field and are being published as a monograph of the American Mathematical Society.

The meeting was sponsored by the Conference Board of Mathematical Sciences, which periodically calls such a meeting to focus on an important, contemporary research topic. These meetings are “much sought after” according to Louis Pigno, head of the Department of Mathematics. “They are extremely valuable for the mutual exchange of results, ideas, and problems.”

Participants came from five foreign countries and 16 states. The conference was organized by K-State professors Todd Cochrane and Robert Dressler.

Visiting speakers highlight undergraduate lecture series

Lectures by two distinguished visiting mathematicians and an alumna were the highlights of the Undergraduate Lecture Series last fall.

Enrico Bombieri, a Fields Medalist from the Institute for Advanced Study at Princeton, gave an undergraduate lecture on the distribution of the prime numbers.

Gary Meisters, from the University of Nebraska, gave an undergraduate lecture on escape velocities and black holes.

Lori Beal, class of 1988, gave an excellent presentation on how to motivate students to take math.

Seven of our own faculty gave lectures in the undergraduate series. Andrew Bennett spoke on counting formulas in geometry, Todd Cochrane talked about Pascal’s triangle, Alberto Delgado gave an introduction to our mathematical software, Thomas Muenzenberger spoke about careers in mathematics, Brent Smith talked about steel balls, Karl Stromberg spoke on transcendental numbers, and David Surowski spoke on unprovably true statements. Derek Stanfill visited the department and described the career opportunities in the United States Peace Corps.

Next fall, Barry Mazur, a renowned mathematician from Harvard University, will visit K-State and give an undergraduate lecture. Also, Sterling Berberian, a mathematician from the University of Texas, is slated to give a mini-course on the Lebesgue integral for our undergraduates. Several business representatives and alumni are scheduled to speak to our mathematics majors.

Our goal is to introduce our students to the various branches of mathematics and to the many opportunities in mathematics by means of presentations by our faculty and by outside speakers including our alumni, employers, and distinguished mathematicians from other universities.

We invite our alumni to volunteer to speak in the Undergraduate Lecture Series. To volunteer, just call Dr. Muenzenberger, our director of undergraduate studies, at (913) 532-6750.
Department opens computer classroom laboratory

A math-physics computer classroom laboratory that allows students to see mathematical situations first hand opened during the spring 1990 semester.

The lab has 15 IBM PCs (386/87 machines) with color monitors networked to a Sun fileserver. There is also a computer display system for the instructor. In the past year, courses in elementary differential equations, linear algebra, numerical analysis, theory of equations, experimental mathematics, and topics in mathematics for elementary school teachers have all used the new lab.

Several different strategies have been employed in using the lab in classroom teaching. Some courses, such as numerical analysis and experimental mathematics, are using the lab as their regular classroom. In these courses, the instructor doesn’t just tell the students what will happen in a particular situation but instead lets the students see for themselves.

In elementary differential equations and in linear algebra, classes meet in the lab once a week for a lab session. In these courses material is presented in lecture and then students explore the material during their labs.

In other courses, the lab is only used for a one- or two-week period when computer experimentation is relevant.

Kansas State University’s use of the lab is attracting nationwide attention. Professor Andrew Bennett has been invited to speak on the use of the lab in elementary differential equations at a meeting of the American Mathematical Society in Tampa, Florida.

The one problem with the lab is that it is already getting overbooked. When the Department of Physics starts to schedule more courses in the lab (currently they only run two small classes), the scheduling problems will get even worse.

The mathematics department has requested funds from the National Science Foundation to develop a second laboratory and is searching for additional funding to allow more students to benefit from modern technology in the classroom.

Spencer Lecture Series established

In recognition of Dr. William J. Spencer’s outstanding accomplishments and the credit he has brought to Kansas State University and the College of Arts and Sciences, the Department of Mathematics has established the William J. Spencer Lecture Series in Mathematics.

The endowed series will fund three primary programs: lectures by prominent research mathematicians, mathematical conferences to be held on campus, and lectures for short intensive courses. Alumni and friends can make contributions to the lecture series by sending a check made out to Friends of Mathematics/Spencer Lecture Series, to:

Professor Louis Pigno, Head
Department of Mathematics
136 Cardwell Hall
Kansas State University
Manhattan, KS 66506-2602

An interview with Dr. Spencer appeared in the Spring 1990 Friends of Mathematics Newsletter.

Friends of Mathematics holds annual banquet

This year’s Friends of Mathematics festivities will take place on Thursday, April 25. As in the past, festivities will include a lecture by an invited mathematician of international standing and an address by an outstanding alumnus of the K-State math program. There will be a banquet honoring outstanding undergraduate and graduate students, and involving the presentation of scholarship awards.

Professor Charles Curtis of the University of Oregon will lecture on representations of finite groups, past and present. His banquet address will be on the “unreasonable effective”ness of mathematics. Curtis has been a leading figure in the theory of group representations for more than 20 years, and he is presently a member of the board of trustees of the Mathematical Sciences Research Institute in Berkeley.

Our distinguished alumnus this year is Professor Donald E. Myers from the University of Arizona, where he has been on the mathematics faculty since 1960. Myers’s work involves applications of mathematics to geostatistics, soil mechanics, lake-water chemistry, and environmental restoration. These applications are reflected in the title of his address: “A mathematician and interdisciplinary research.”

We encourage all interested alumni to participate in these annual festivities. If you would like to attend next year’s banquet, contact Professor Louis Herman or Andy Chermak, Department of Mathematics, 136 Cardwell Hall, Kansas State University, (913) 532-6750.
Alumni News

Kevin Follett, B.S. 1983, is a math teacher at Ft. Collins High School in Colorado. His wife, Karen, is also a K-State alum and they have two daughters, Katie, 3, and Kelsey, 1. He ran the Doc Holliday 35-mile Trail Run last May at Glenwood Springs and participated in a special retreat last summer on teaching algebra.

John M. Keyser, B.S. 1957, spent 26 years in the U.S. Army, serving in Europe, Korea, Vietnam, and as an ROTC faculty member at the University of Arizona. He then worked for Eaton Corporation as personnel supervisor at a manufacturing plant for 12½ years. He served as president from 1988–1990 of a World War II veterans association with 2,400 members nationwide. He also earned a master’s degree at Western Kentucky University. He is now retired and touring the United States in a motor home, an activity which he recommends.

Marilyn Nelson (McCord), B.S. 1961, is a self-employed consultant in Bayfield, Colorado. She “semi-retired” from Texas Instruments in July 1989 and now occasionally teaches programming at Los Alamos National Laboratory and for Digital Equipment Corporation. She is co-author of A Practical Guide to Neural Nets, published by Addison-Wesley in 1990 and is starting work on a second neural network book. She enjoys fishing and back-packing in the San Juan Mountains with her husband, George.

Donald E. Myers, B.S. 1953, M.S. 1955, has been professor of mathematics at the University of Arizona for 30 years. He was recently elected program chairman of the environmental statistics section of the American Statistical Association.

Shiojenn Tseng, Ph.D. 1987, has been a professor at Tamkang University in Taiwan since graduating from K-State. He and his wife now have two children, Kathryn, 7, and Karl, 2.

Information wanted

As you probably know, we issue a departmental newsletter once a year. We like to include some notes about our alumni whenever possible. If you would like us to include some news about you in a future issue, please fill out our alumni survey form and send it back to:

Alumni survey

Name ________________________________
Class and Degree ___________________
Address _____________________________

Occupation _________________________
Title ______________________________

Time in current job __________________
Recent promotions, awards, special achievements in your work

Personal happenings you would like to share

News of other classmates or other remarks

Louis Pigno, Head
Department of Mathematics
136 Cardwell Hall
Kansas State University
Manhattan, KS 66506-2602

Notice of Nondiscrimination
Kansas State University is committed to a policy of nondiscrimina-
tion on the basis of race, sex, national origin, handicap, religion, age, sexual preference, or other nonmerit reasons, in admissions, educational programs or activities, and employment, all as required by applicable laws and regulations. Responsibility for coordination of compliance efforts and receipt of inquiries, including those concerning Title IX of the Education Amend-
ments of 1972 and Section 504 of the Rehabilitation Act of 1973, has been delegated to Jane D. Rowlett, Ph.D., Director, Affirmative Action Office, 214 Anderson Hall, Kansas State University, Manhattan, Kansas 66506-0104. (913) 532-6220.