Dirichlet eigenvalues via Γ-convergence and optimal transportation

Todd Harry Reeb

University of Utah

September 26, 2015
Set-up and the continuous problem

- $D \subset \mathbb{R}^d (d \geq 2)$ is an open, bounded, connected domain with Lipschitz boundary
- ν is a Borel probability measure with a continuous density ρ where $0 < m \leq \rho \leq M$ pointwise for some constants m, M
Set-up and the continuous problem

- $D \subset \mathbb{R}^d (d \geq 2)$ is an open, bounded, connected domain with Lipschitz boundary;
- ν is a Borel probability measure with a continuous density ρ where $0 < m \leq \rho \leq M$ pointwise for some constants m, M.

Find the Neumann eigenvalues of the weighted Laplacian

$$\mathcal{L}u = \frac{-1}{\rho} \text{div}(\rho^2 \nabla u),$$

i.e., solve

$$\mathcal{L}u = \lambda u$$
$$\frac{\partial u}{\partial n} = 0$$

for $\lambda \in \mathbb{R}, u \in H^1(D)$.
Sample points \(\{x_n\}_{n \in \mathbb{N}} \) from \((D, \nu, \rho)\) iid

Choose a similarity function \(\eta: \mathbb{R}^d \to [0, \infty] \) radial, nonincreasing, \(\eta(0) > 0 \) and continuous at 0, and \(\sigma_{\eta} = \int_{\mathbb{R}^d} \eta(h) |h|^2 dh < \infty \). (Example: \(\eta = \chi_{B_1(0)} \))

Make similarity functions for each \(n \in \mathbb{N} \):

\[
\eta_{\varepsilon}(x) := \frac{1}{\varepsilon} \eta_{\varepsilon}(x)
\]

where \(\{\varepsilon_n\}_{n \in \mathbb{N}} \) is a sequence of positive numbers \(\varepsilon_n \to 0 \) that don't decrease "too quickly."
Discrete problem

- Sample points \(\{x_n\}_{n \in \mathbb{N}}\) from \((D, \nu, \rho)\) iid
- For each \(n \in \mathbb{N}\), form the (weighted, undirected) graph \(G_n\) on \(\{x_1, \ldots, x_n\}\) with edge weights \(W_{ij}^{(n)}\). How?
Discrete problem

- Sample points \(\{x_n\}_{n \in \mathbb{N}} \) from \((D, \nu, \rho)\) iid
- For each \(n \in \mathbb{N} \), form the (weighted, undirected) graph \(G_n \) on \(\{x_1, \ldots, x_n\} \) with edge weights \(W_{ij}^{(n)} \). How?
- Choose a similarity function \(\eta : \mathbb{R}^d \to [0, \infty] \): radial, nonincreasing, \(\eta(0) > 0 \) and continuous at 0, and
 \[\sigma_\eta = \int_{\mathbb{R}^d} \eta(h)|h_1|^2 \, dh < \infty. \] (Example: \(\eta = \chi_{B_1(0)} \))
- Make similarity functions for each \(n \in \mathbb{N} \): \(\eta_\varepsilon(x) := \frac{1}{\varepsilon^d} \eta\left(\frac{x}{\varepsilon}\right) \)
 where \(\{\varepsilon_n\}_{n \in \mathbb{N}} \) is a sequence of positive numbers \(\varepsilon_n \to 0 \) that don’t decrease “too quickly.”
Discrete problem (continued)

- Set the edge weights: \(W_{ij}^{(n)} = \eta_{\varepsilon_n} (x_i - x_j) \)

Now form the graph Laplacian \(L^{(n)} = D^{(n)} - W^{(n)} \) of \(G_n \) and find its eigenvalues:

\[
0 = \lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \cdots \leq \lambda_n^{(n)}
\]
Set the edge weights: \(W_{ij}^{(n)} = \eta \varepsilon_n (x_i - x_j) \)

Now form the graph Laplacian \(L^{(n)} = D^{(n)} - W^{(n)} \) of \(G_n \) and find its eigenvalues:

\[
0 = \lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \cdots \leq \lambda_n^{(n)}
\]

As \(n \to \infty \) does the \(k \)th eigenvalue of \(L^{(n)} \) converge to the \(k \)th eigenvalue of \(\mathcal{L} \)?
Set the edge weights: \(W_{ij}^{(n)} = \eta \varepsilon_n (x_i - x_j) \)

Now form the graph Laplacian \(L^{(n)} = D^{(n)} - W^{(n)} \) of \(G_n \) and find its eigenvalues:

\[
0 = \lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \cdots \leq \lambda_n^{(n)}
\]

As \(n \to \infty \) does the \(k \)th eigenvalue of \(L^{(n)} \) converge to the \(k \)th eigenvalue of \(L \)? Yes!
Results of García Trillos-Slepčev

Theorem (García Trillos-Slepčev 2015)

Choose \(\varepsilon_n \to 0 \) to satisfy

\[
\lim_{n \to \infty} \frac{\left(\log n\right)^{3/4}}{n^{1/2}} \frac{1}{\varepsilon_n} = 0 \quad \text{if } n = 2
\]

\[
\lim_{n \to \infty} \frac{\left(\log n\right)^{1/d}}{n^{1/d}} \frac{1}{\varepsilon_n} = 0 \quad \text{if } n \geq 3.
\]

In the set-up above, for all \(k \in \mathbb{N} \),

\[
\lim_{n \to \infty} \frac{2\lambda_k^{(n)}}{n \varepsilon_n^2} = \sigma_\eta \lambda_k
\]

and \(\text{Proj}_{k}^{(n)}(v_n) \to \text{Proj}_k(v) \) if \(v_n \to v \) for functions \(v_n \) on \(G_n \) and \(v \in L^2(D, \nu) \).
Results of García Trillos-Slepčev

Theorem (García Trillos-Slepčev 2015)

Choose $\varepsilon_n \to 0$ to satisfy

$$\lim_{n \to \infty} \frac{(\log n)^{3/4}}{n^{1/2}} \frac{1}{\varepsilon_n} = 0 \text{ if } n = 2$$

$$\lim_{n \to \infty} \frac{(\log n)^{1/d}}{n^{1/d}} \frac{1}{\varepsilon_n} = 0 \text{ if } n \geq 3.$$

In the set-up above, for all $k \in \mathbb{N}$,

$$\lim_{n \to \infty} \frac{2\lambda^{(n)}_k}{n \varepsilon_n^2} = \sigma_\eta \lambda_k$$

and $\text{Proj}^{(n)}_k(v_n) \to \text{Proj}_k(v)$ if $v_n \to v$ for functions v_n on G_n and $v \in L^2(D, \nu)$.

What’s new? Values of ε_n (close to optimal) and a framework for discrete-to-continuum passage without strong regularity assumptions.
Motivation

- Approximate continuous problem using the discrete problem
Motivation

- Approximate continuous problem using the discrete problem
- They use this result to show consistency of spectral clustering: (Discrete) spectral clustering on graphs which approximate D converges to (continuum) spectral clustering on D.
Ingredient 1: Γ-convergence of discrete Dirichlet energies

- Main idea of Γ-convergence: Weaken the direct methods of calculus of variations by looking at a sequence of approximating functionals and relax lower semi-continuity/coercitivity.
Ingredient 1: Γ-convergence of discrete Dirichlet energies

- Main idea of Γ-convergence: Weaken the direct methods of calculus of variations by looking at a sequence of approximating functionals and relax lower semi-continuity/coercitivity.
- Let $F, F_n : X \rightarrow \mathbb{R}$ be functionals.
- liminf inequality: For all $x_n \rightarrow X$, $\lim \inf_n F_n(x_n) \geq F(x)$.
- limsup inequality: For all $x \in X$, there is $x_n \rightarrow x$ such that $\lim \sup_n F_n(x_n) \leq F(x)$.
Main idea of Γ-convergence: Weaken the direct methods of calculus of variations by looking at a sequence of approximating functionals and relax lower semi-continuity/coercitivity.

Let $F, F_n : X \to \mathbb{R}$ be functionals.

- liminf inequality: For all $x_n \to X$, $\lim \inf_n F_n(x_n) \geq F(x)$.
- limsup inequality: For all $x \in X$, there is $x_n \to x$ such that $\lim \sup_n F_n(x_n) \leq F(x)$.

- Compactness: If $\{u_n\}_{n \in \mathbb{N}}$ is such that $\sup_n F_n(x_n) < \infty$ then this sequence is precompact.
We have that the discrete Dirichlet energies G_{n,ε_n} Γ-converge to the continuum Dirichlet energy $\sigma_{\eta} G$ where

$$G_{n,\varepsilon_n}(u) = \frac{1}{\varepsilon_n^2 n^2} \sum_{i,j} W_{i,j}^{(n)}(u(x_i) - u(x_j))^2$$

$$G(u) = \int_D |\nabla u|^2 \rho(x)^2 \, dx \text{ or } \infty \text{ if } u \notin H^1(D).$$
We have that the discrete Dirichlet energies G_{n,ε_n} Γ-converge to the continuum Dirichlet energy $\sigma_\eta G$ where

$$G_{n,\varepsilon_n}(u) = \frac{1}{\varepsilon_n^2 n^2} \sum_{i,j} W_{i,j}^{(n)} (u(x_i) - u(x_j))^2$$

$$G(u) = \int_D |\nabla u|^2 \rho(x)^2 \, dx \text{ or } \infty \text{ if } u \notin H^1(D).$$

This result holds almost surely with respect to the points $\{x_n\}_{n \in \mathbb{N}}$.
We have that the discrete Dirichlet energies G_{n,ε_n} Γ-converge to the continuum Dirichlet energy $\sigma_\eta G$ where

$$G_{n,\varepsilon_n}(u) = \frac{1}{\varepsilon_n^2 n^2} \sum_{i,j} W_{i,j}^{(n)}(u(x_i) - u(x_j))^2$$

$$G(u) = \int_D |\nabla u|^2 \rho(x)^2 \, dx \text{ or } \infty \text{ if } u \notin H^1(D).$$

This result holds almost surely with respect to the points $\{x_n\}_{n \in \mathbb{N}}$.

How does Γ-convergence help here? The defining inequalities and existence of useful sequences $\nu_n \rightarrow \nu$.
Ingredient 2: Metric coming from optimal transportation

Think of \(G_n \) as \(D \) with the empirical measure \(\nu_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \) together with the edge data \(W^{(n)} \). How should functions \(u_n \) supported on the graph \(G_n \) converge to a function \(u \) on \(D \)?
Think of G_n as D with the emiprical measure $\nu_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ together with the edge data $W^{(n)}$. How should functions u_n supported on the graph G_n converge to a function u on D?

$\nu_n \in L^2(D, \nu_n)$ converge to $\nu \in L^2(D, \nu)$ in the TL^2-sense if $\nu_n \rightharpoonup \nu$ and if there are ”nice” transportation maps $T_n : D \to D$ (with $(T_n)_*(\nu) = \nu_n$) such that $\nu_n \circ T_n \rightharpoonup \nu$ in $L^2(D, \nu)$.
Think of G_n as D with the empirical measure $\nu_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ together with the edge data $W^{(n)}$. How should functions u_n supported on the graph G_n converge to a function u on D?

$\nu_n \in L^2(D, \nu_n)$ converge to $\nu \in L^2(D, \nu)$ in the TL^2-sense if $\nu_n \rightharpoonup \nu$ and if there are "nice" transportation maps $T_n : D \rightarrow D$ (with $(T_n)_*(\nu) = \nu_n$) such that $\nu_n \circ T_n \rightarrow \nu$ in $L^2(D, \nu)$.

Main idea: Extend ν_n to D (instead of restricting ν to G_n), but in way that's faithful to both (D, ν, ρ) and x_1, x_2, \ldots, x_n.

Ingredient 2: Metric coming from optimal transportation
Sketch of the proof (for the eigenvalues)

▶ Prove Γ-convergence of the Dirichlet energies by interpolating with other functionals G_{ε_n} that also Γ-converge to $\sigma_\eta G$.

▶ View the eigenvalues using the Courant-Fischer maxmini principle:

$$
\lambda_k = \max_{S \in \Sigma_{k-1}} \min_{\|u\|_\nu = 1, u \in S} G(u)
$$

where Σ_{k-1} is the set of $(k-1)$-dimensional subspaces of $L^2(D, \nu)$.

▶ Use induction on k and establish lower and upper bounds for each k-dimensional subspace of $L^2(D, \nu)$; conclude by applying Courant-Fischer.
Sketch of the proof (for the eigenvalues)

- Prove Γ-convergence of the Dirichlet energies by interpolating with other functionals G_{ε_n} that also Γ-converge to $\sigma_\eta G$.

- View the eigenvalues using the Courant-Fischer maxmini principle:

$$\lambda_k = \max_{S \in \Sigma_{k-1}} \min_{\|u\|_\nu=1, u \in S^\perp} G(u)$$

where Σ_{k-1} is the set of $(k - 1)$-dimensional subspaces of $L^2(D, \nu)$.
Sketch of the proof (for the eigenvalues)

- Prove Γ-convergence of the Dirichlet energies by interpolating with other functionals G_{ε_n} that also Γ-converge to $\sigma_\eta G$.
- View the eigenvalues using the Courant-Fischer maxmini principle:
 \[\lambda_k = \max_{S \in \Sigma_{k-1}} \min_{\|u\|_{\nu}=1, u \in S^\perp} G(u) \]
 where Σ_{k-1} is the set of $(k-1)$-dimensional subspaces of $L^2(D, \nu)$.
- Use induction on k and establish lower and upper bounds for each k-dimensional subspace of $L^2(D, \nu)$; conclude by applying Courant-Fischer.
Extensions to Dirichlet eigenvalues

(Joint with Braxton Osting.) In the same set-up, we now also consider $U \subsetneq D$ satisfying the same assumptions as D.
(Joint with Braxton Osting.) In the same set-up, we now also consider $U \subsetneq D$ satisfying the same assumptions as D.

Continuous problem: Minimize the G over all functions $u \in H^1_0(U)$ of unit norm to get the first Dirichlet eigenvalue μ_1 of D. (Use the Courant-Fischer maxmini principle to get the higher Dirichlet eigenvalues μ_k.)
Extensions to Dirichlet eigenvalues

(Joint with Braxton Osting.) In the same set-up, we now also consider \(U \subsetneq D \) satisfying the same assumptions as \(D \).

Continuous problem: Minimize the \(G \) over all functions \(u \in H^1_0(U) \) of unit norm to get the first Dirichlet eigenvalue \(\mu_1 \) of \(D \). (Use the Courant-Fischer maxmini principle to get the higher Dirichlet eigenvalues \(\mu_k \).)

Discrete problem: Minimize \(G_{\varepsilon_n,n} \) over all functions \(u \) on \(G_n \) with unit norm that vanish outside of \(\{x_1, x_2, \ldots, x_n\} \cap U \) to get the first Dirichlet eigenvalue \(\mu_1^{(n)} \) of \(G_n \). (Use the Courant-Fischer maxmini principle to get the higher Dirichlet eigenvalues \(\mu_k^{(n)} \).)
Extensions to Dirichlet eigenvalues (cont.)

- We conjecture that results analogous to these for the Neumann eigenvalues hold for the Dirichlet eigenvectors.

Why do we care? Better understanding of both the discrete and continuous problems. (Former has applications in clustering, image segmentation, etc.)
We conjecture that results analogous to these for the Neumann eigenvalues hold for the Dirichlet eigenvectors.

Why do we care? Better understanding of both the discrete and continuous problems. (Former has applications in clustering, image segmentation, etc.)
The proof for the Neumann eigenvalues largely carries over when we modify the Courant-Fischer maximi principle to look only at functions in $H^1_0(U) \subset L^2(D, \nu)$.

Our idea: For a good choice of $\{T_n\} \subset \mathbb{N}$, which distinguish U and $D - U$ asymptotically, we can show directly that $v|_{\partial U} = 0$.

Strategy for proof
Strategy for proof

- The proof for the Neumann eigenvalues largely carries over when we modify the Courant-Fischer maximi principle to look only at functions in $H^1_0(U) \subset L^2(D, \nu)$.

- Main problem: certain auxiliary functions $v_n \to v$ have limits in $v \in H^1(D)$ by said proof, but we need them to be in $H^1_0(U)$.

The proof for the Neumann eigenvalues largely carries over when we modify the Courant-Fischer maximi principle to look only at functions in $H^1_0(U) \subset L^2(D, \nu)$.

Main problem: certain auxiliary functions $v_n \to v$ have limits in $v \in H^1(D)$ by said proof, but we need them to be in $H^1_0(U)$.

Our idea: For a good choice of $\{T_n\}_{n \in \mathbb{N}}$, which distinguish U and $D - U$ asymptotically, we can show directly that $v|_{\partial U} = 0$.
Future directions

- Better understanding of image segmentation and manifold learning.
Future directions

- Better understanding of image segmentation and manifold learning.
- (discrete) Dirichlet partition problem: Partition $V = V_1 \sqcup V_2 \sqcup \ldots \sqcup V_k$ to minimize $\sum_{i=1}^{k} \mu_1(V_i)$. There is an algorithm for approximating the optimal partition of a graph due to Osting-White-Oudet (2014). If G approximates a domain D, then how do we effectively add points to G as a step in the algorithm?
Future directions

- Better understanding of image segmentation and manifold learning.

- (discrete) Dirichlet partition problem: Partition \(V = V_1 \sqcup V_2 \sqcup \ldots \sqcup V_k \) to minimize \(\sum_{i=1}^{k} \mu_1(V_i) \).

- There is an algorithm for approximating the optimal partition of a graph \(G \) due to Osting-White-Oudet (2014). If \(G \) approximates a domain \(D \), then how do we effectively add points to \(G \) as a step in the algorithm?
Questions? Comments? Please contact me!
reeb@math.utah.edu
Questions? Comments? Please contact me!
reeb@math.utah.edu
Thanks!
