Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral gap interior.

Minh Kha (Texas A&M)

Joint with P. Kuchment (Texas A&M)
and A. Raich (University of Arkansas)

Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.

September 25, 2015
Outline

1. Decay of the resolvents for $-\Delta$
2. Periodic PDOs and dispersion relations
3. Asymptotics of Green's functions of periodic elliptic operators
Laplacian $-\Delta$ on \mathbb{R}^d

$R_\lambda = (-\Delta - \lambda)^{-1}$, for $\lambda (< 0)$ in $\rho(-\Delta)$
Resolvents of Laplace operators

Laplacian $-\Delta$ on \mathbb{R}^d

$R_\lambda = (-\Delta - \lambda)^{-1}$, for $\lambda (<0)$ in $\rho(-\Delta)$

By Fourier transform, Green’s function G_λ of $-\Delta$ at λ — kernel of R_λ:

$$G_\lambda(x, y) = \frac{1}{(2\pi)^d} \int \frac{e^{i(x-y)\xi}}{|\xi|^2 - \lambda} d\xi$$
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green’s functions of periodic elliptic operators

Resolvents of Laplace operators

Laplacian $-\Delta$ on \mathbb{R}^d

$R_\lambda = (-\Delta - \lambda)^{-1}$, for $\lambda (< 0)$ in $\rho(-\Delta)$

By Fourier transform, Green’s function G_λ of $-\Delta$ at λ – kernel of R_λ:

$$G_\lambda(x, y) = \frac{1}{(2\pi)^d} \int \frac{e^{i(x-y)\xi}}{|\xi|^2 - \lambda} d\xi$$

Q: Investigate the asymptotics of $G_\lambda(x, y)$ as $|x - y| \to \infty$.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M)
Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators.
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green's functions of periodic elliptic operators

Decay of resolvents for Laplacian

If $d = 3$, $G_\lambda(x, y) = \frac{1}{4\pi |x-y|} e^{-|\lambda|^{1/2}}$

If $d \geq 4$, $G_\lambda(x, y) \sim e^{-|\lambda|^{1/2}} |x-y|^{(d-2)/2} |\lambda|^{(d-3)/4} |x-y|^{(d-1)/2}$

Exponential decay of the Green's function as $|x-y| \to \infty$ related to distance between λ and spectrum $\sigma(-\Delta)$.

Additional power decay
Decay of the resolvents for $-\Delta$

Periodic PDOs and dispersion relations

Asymptotics of Green's functions of periodic elliptic operators

Decay of resolvents for Laplacian

If $d = 3$, \(G_\lambda(x, y) = \frac{1}{4\pi|x - y|} e^{-|\lambda|^{1/2}|x - y|} \)

Exponential decay of the Green's function as $|x - y| \to \infty$ related to distance between λ and spectrum $\sigma(-\Delta)$.

Additional power decay
If $d = 3$, $G_\lambda(x, y) = \frac{1}{4\pi|x - y|} e^{-|\lambda|^{1/2}|x - y|}$

If $d \geq 4$, $G_\lambda(x, y) \sim e^{-|\lambda|^{1/2}|x - y|} \left(\frac{1}{|x - y|^{d-2}} + \frac{|\lambda|^{(d-3)/4}}{|x - y|^{(d-1)/2}} \right)$
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green's functions of periodic elliptic operators

Decay of resolvents for Laplacian

If $d = 3$, $G_\lambda(x, y) = \frac{1}{4\pi|x-y|} e^{-|\lambda|^{1/2}|x-y|}$

If $d \geq 4$, $G_\lambda(x, y) \sim e^{-|\lambda|^{1/2}|x-y|} \left(\frac{1}{|x-y|^{d-2}} + \frac{|\lambda|^{(d-3)/4}}{|x-y|^{(d-1)/2}} \right)$

Exponential decay of the Green's function as $|x-y| \to \infty$ related to distance between λ and spectrum $\sigma(-\Delta)$.
Decay of resolvents for Laplacian

If $d=3$, $G_\lambda(x, y) = \frac{1}{4\pi|x-y|} e^{-|\lambda|^{1/2}|x-y|}$

If $d \geq 4$, $G_\lambda(x, y) \sim e^{-|\lambda|^{1/2}|x-y|} \left(\frac{1}{|x-y|^{d-2}} + \frac{|\lambda|^{(d-3)/4}}{|x-y|^{(d-1)/2}} \right)$

- **Exponential decay** of the Green’s function as $|x-y| \to \infty$ related to distance between λ and spectrum $\sigma(-\Delta)$.
- Additional power decay
Outline

1. Decay of the resolvents for $-\Delta$

2. Periodic PDOs and dispersion relations

3. Asymptotics of Green’s functions of periodic elliptic operators
Decay of the resolvents for $-\Delta$

Periodic PDOs and dispersion relations

Asymptotics of Green’s functions of periodic elliptic operators

Periodic PDO

$L = -\Delta + V(x)$

where $\forall n \in \mathbb{Z}^d$, $V(x + n) = V(x)$

The results also hold for self-adjoint elliptic operator in \mathbb{R}^d

$L(x, D) = D^* A(x) D + V(x)$, $D = \{-i \partial_k\}_{d k=1}$

where $A: \mathbb{R}^d \to \mathbb{R}^d \times d$ and $V: \mathbb{R}^d \to \mathbb{R}$ smooth and periodic w.r.t \mathbb{Z}^d.
Dimension $d > 1$.
Periodic Schrödinger operator in \mathbb{R}^d:

$$L = -\Delta + V(x)$$
Periodic PDO

Dimension $d > 1$.

Periodic Schrödinger operator in \mathbb{R}^d:

$$L = -\Delta + V(x)$$

where

$$\forall n \in \mathbb{Z}^d, V(x + n) = V(x)$$
Dimension $d > 1$.
Periodic Schrödinger operator in \mathbb{R}^d:

$$L = -\Delta + V(x)$$

where

$$\forall n \in \mathbb{Z}^d, V(x + n) = V(x)$$

The results also hold for self-adjoint elliptic operator in \mathbb{R}^d

$$L(x, D) = D^* A(x) D + V(x), D = \{-i\partial_k\}_{k=1}^d$$

where $A : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ and $V : \mathbb{R}^d \to \mathbb{R}$ smooth and periodic w.r.t \mathbb{Z}^d.
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green's functions of periodic elliptic operators

Dispersion relation

$T := \mathbb{R}^d / \mathbb{Z}^d, \quad T^* := \mathbb{R}^d / (2\pi \mathbb{Z})^d$

$L(k) := -\Delta - 2i k \cdot \nabla + k^2 + V(x)$ on T, for $k \in \mathbb{C}^d$

$L(k)$ is bounded below and for $k \in \mathbb{R}^d$

$\sigma(L(k)) = \{ \lambda_i(k) | \lambda_1(k) \leq \lambda_2(k) \leq ... \leq \lambda_n(k),... \rightarrow \infty \}$

Eigenvalues $\lambda_i(k)$ - continuous and piecewise analytic

Operator L decomposes into direct sum of multiplication operators by $\lambda_i(k)$
Dispersion relation

\[T := \mathbb{R}^d / \mathbb{Z}^d, \quad T^* := \mathbb{R}^d / (2\pi \mathbb{Z})^d \]

\[L(k) := -\Delta - 2ik \cdot \nabla + k^2 + V(x) \text{ on } T, \text{ for } k \in \mathbb{C}^d \]
Dispersion relation

- $\mathbb{T} := \mathbb{R}^d / \mathbb{Z}^d$, $\mathbb{T}^* := \mathbb{R}^d / (2\pi \mathbb{Z})^d$
- $L(k) := -\Delta - 2ik \cdot \nabla + k^2 + V(x)$ on \mathbb{T}, for $k \in \mathbb{C}^d$
- $L(k)$ is bounded below and for $k \in \mathbb{R}^d$,
 $\sigma(L(k)) = \{\lambda_i(k) \mid \lambda_1(k) \leq \lambda_2(k) \leq \cdots \leq \lambda_n(k), \ldots \rightarrow \infty\}$
Dispersion relation

- $\mathbb{T} := \mathbb{R}^d / \mathbb{Z}^d$, $\mathbb{T}^* := \mathbb{R}^d / (2\pi \mathbb{Z})^d$
- $L(k) := -\Delta - 2ik \cdot \nabla + k^2 + V(x)$ on \mathbb{T}, for $k \in \mathbb{C}^d$
- $L(k)$ is bounded below and for $k \in \mathbb{R}^d$, $\sigma(L(k)) = \{ \lambda_i(k) | \lambda_1(k) \leq \lambda_2(k) \leq \ldots \leq \lambda_n(k), \ldots \to \infty \}$
- Eigenvalues $\lambda_i(k)$- continuous and piecewise analytic
Dispersion relation

- $\mathbb{T} := \mathbb{R}^d / \mathbb{Z}^d$, $\mathbb{T}^* := \mathbb{R}^d / (2\pi \mathbb{Z})^d$

- $L(k) := -\Delta - 2ik \cdot \nabla + k^2 + V(x)$ on \mathbb{T}, for $k \in \mathbb{C}^d$

- $L(k)$ is bounded below and for $k \in \mathbb{R}^d$, $\sigma(L(k)) = \{\lambda_i(k) | \lambda_1(k) \leq \lambda_2(k) \leq \ldots \leq \lambda_n(k), \ldots \rightarrow \infty\}$

- Eigenvalues $\lambda_i(k)$- continuous and piecewise analytic

- Operator L decomposes into direct sum of multiplication operators by $\lambda_i(k)$
The multi-valued mapping
\(k \mapsto \sigma(L(k)) \) is called dispersion relation. Its graph is:

\[
B_L = \{ (k, \lambda) \in \mathbb{C}^{d+1} | \exists u \neq 0 : L(k)u = \lambda u \}
\]
The multi-valued mapping \(k \mapsto \sigma(L(k)) \) is called dispersion relation.
The multi-valued mapping $k \mapsto \sigma(L(k))$ is called dispersion relation. Its graph is:

$$B_L = \{(k, \lambda) \in \mathbb{C}^{d+1} | \exists u \neq 0 : L(k)u = \lambda u\}$$
The multi-valued mapping $k \mapsto \sigma(L(k))$ is called dispersion relation. Its graph is:

$$B_L = \{(k, \lambda) \in \mathbb{C}^{d+1} \mid \exists u \neq 0 : L(k)u = \lambda u\}$$

k – quasimomentum
Dispersion relation of $-\Delta$

$B_{-\Delta}$ union of $(2\pi \mathbb{Z})^d$-shifted of the single paraboloid $k^2 = \lambda$
Dispersion, bands, and gaps

Floquet-Bloch theory: $\sigma(L) = \bigcup_{k \in \mathbb{R}^d} \sigma(L(k)) = \bigcup_{j} I_j$. Bands can overlap when $d > 1$, but may leave spectral gaps between them.
Dispersion, bands, and gaps

Floquet-Bloch theory:

$\sigma(L) = \bigcup_{k \in \mathbb{R}^d} \sigma(L(k)) = \bigcup_{j} I_j$.

Bands can overlap when $d > 1$, but may leave spectral gaps between them.
Dispersion, bands, and gaps

- $l_j = [\alpha_j, \beta_j]$ - range of $\{\lambda_j(k)\}_k$, the j^{th}-band function.
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green’s functions of periodic elliptic operators

Dispersion, bands, and gaps

- $I_j = [\alpha_j, \beta_j]$ - range of $\{\lambda_j(k)\}_k$, the j^{th}-band function.
- **Floquet-Bloch** theory: $\sigma(L) = \bigcup_{k \in \mathbb{R}^d} \sigma(L(k)) = \bigcup_j I_j$.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M) Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.
Dispersion, bands, and gaps

- $I_j = [\alpha_j, \beta_j]$ - range of $\{\lambda_j(k)\}_k$, the j^{th}-band function.
- **Floquet-Bloch** theory: $\sigma(L) = \bigcup_{k \in \mathbb{R}^d} \sigma(L(k)) = \bigcup_j I_j$.
- Bands can overlap when $d > 1$, but may leave **spectral gaps** between them.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M) Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.

Green's function asymptotics near the internal edges of spectra of periodic elliptic operators.
The problem

Spectral gap (β, α) and $\lambda \in (\beta, \alpha)$.

λ is close to spectral edge β or α.

Schwartz kernel of $(L - \lambda)^{-1}$ in $L^2(\mathbb{R}^d)$ – Green's function.

Goal: study asymptotics of $G_{\lambda}(x, y)$ when $|x - y| \to \infty$.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M) and A. Raich (University of Arkansas) Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.
The problem

- **Spectral gap** \((\beta, \alpha)\) and \(\lambda \in (\beta, \alpha)\).
The problem

- **Spectral gap** \((\beta, \alpha)\) and \(\lambda \in (\beta, \alpha)\).
- \(\lambda\) is close to **spectral edge** \(\beta\) or \(\alpha\).
The problem

- **Spectral gap** \((\beta, \alpha)\) and \(\lambda \in (\beta, \alpha)\).
- \(\lambda\) is close to **spectral edge** \(\beta\) or \(\alpha\).
- Schwartz kernel of \((L - \lambda)^{-1}\) in \(L^2(\mathbb{R}^d)\) – **Green’s function**
 \(G_\lambda(x, y)\)
The problem

- **Spectral gap** \((\beta, \alpha)\) and \(\lambda \in (\beta, \alpha)\).
- \(\lambda\) is close to **spectral edge** \(\beta\) or \(\alpha\).
- Schwartz kernel of \((L - \lambda)^{-1}\) in \(L^2(\mathbb{R}^d)\) – **Green’s function** \(G_\lambda(x, y)\)

Goal: study asymptotics of \(G_\lambda(x, y)\) when \(|x - y| \to \infty\).
Dispersion, bands, and gaps

Minh Kha (Texas A&M) Joint with P. Kuchment

Green's function asymptotics near the internal edges of spectra of periodic elliptic operators.
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a dispersion curve λ_j for some $j \in \mathbb{N}$.

Assume \exists quasimomentum k_0 s.t. the following ‘generic’ conditions hold:

A1 $\lambda_j(k_0) = 0$

A2 $\min_{k, i \neq j} |\lambda_i(k)| > 0$

A3 k_0 is the only minimum of λ_j (modulo $(2\pi \mathbb{Z})^d$)

A4 The Hessian matrix of λ_j at k_0 is positive definite.

A5 All components of k_0 integer multiples of π.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M) and A. Raich (University of Arkansas) Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a dispersion curve λ_j for some $j \in \mathbb{N}$.
Assume \exists quasimomentum k_0 s.t. the following ’generic’ conditions hold:
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a
dispersion curve λ_j for some $j \in \mathbb{N}$.
Assume \exists quasimomentum k_0 s.t. the following ’generic’
conditions hold:

- **A1** $\lambda_j(k_0) = 0$
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a dispersion curve λ_j for some $j \in \mathbb{N}$.
Assume \exists quasimomentum k_0 s.t. the following ‘generic’ conditions hold:

- **A1** $\lambda_j(k_0) = 0$
- **A2** $\min_{k,i \neq j} |\lambda_i(k)| > 0$
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a dispersion curve λ_j for some $j \in \mathbb{N}$.
Assume \exists quasimomentum k_0 s.t. the following ’generic’ conditions hold:

- **A1** $\lambda_j(k_0) = 0$
- **A2** $\min_{k,i \neq j} |\lambda_i(k)| > 0$
- **A3** k_0 is the only minimum of λ_j (modulo $(2\pi\mathbb{Z})^d$)
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a dispersion curve λ_j for some $j \in \mathbb{N}$.
Assume \exists quasimomentum k_0 s.t. the following 'generic' conditions hold:

- **A1** $\lambda_j(k_0) = 0$
- **A2** $\min_{k, i \neq j} |\lambda_i(k)| > 0$
- **A3** k_0 is the only minimum of λ_j (modulo $(2\pi \mathbb{Z})^d$)
- **A4** The Hessian matrix of λ_j at k_0 is positive definite.
A “generic” spectral edge behavior of L

WLOG – spectral edge of interest $\lambda = 0$, i.e., the minimum of a dispersion curve λ_j for some $j \in \mathbb{N}$.

Assume \exists quasimomentum k_0 s.t. the following ’generic’ conditions hold:

- **A1** $\lambda_j(k_0) = 0$
- **A2** $\min_{k, i \neq j} |\lambda_i(k)| > 0$
- **A3** k_0 is the only minimum of λ_j (modulo $(2\pi \mathbb{Z})^d$)
- **A4** The Hessian matrix of λ_j at k_0 is positive definite.
- **A5** All components of k_0 integer multiples of π.
Outline

1. Decay of the resolvents for $-\Delta$

2. Periodic PDOs and dispersion relations

3. Asymptotics of Green’s functions of periodic elliptic operators
Notations in the main theorem

Define $E(\beta) := \lambda_j(k_0 + i\beta)$. E – real-valued, strictly concave, Hessian at 0 is negative-definite. For $\lambda \approx 0$, $\Gamma_\lambda := \{ \beta | E(\beta) = \lambda \}$ is strictly convex, compact. For $s \in S_{d-1}$, β_s – unique point on Γ_λ s.t. $-\nabla E(\beta_s)|\nabla E(\beta_s)| = s$.
Notations in the main theorem

- Define $E(\beta) := \lambda_j(k_0 + i\beta)$.

- For $\lambda \approx 0$, $\Gamma_\lambda := \{ \beta | E(\beta) = \lambda \}$ is strictly convex, compact.
- For $s \in S_{d-1}$, β_s – unique point on Γ_λ s.t. $-\nabla E(\beta_s)|\nabla E(\beta_s)| = s$.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M) Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.
Notations in the main theorem

- Define $E(\beta) := \lambda_j(k_0 + i\beta)$. E – real-valued, strictly concave, Hessian at 0 is negative-definite.
Notations in the main theorem

- Define $E(\beta) := \lambda_j(k_0 + i\beta)$. E is real-valued, strictly concave, and the Hessian at 0 is negative-definite.
- For $\lambda \approx 0$, $\Gamma_\lambda := \{\beta \mid E(\beta) = \lambda\}$ is strictly convex, compact.
Notations in the main theorem

- Define $E(\beta) := \lambda_j(k_0 + i\beta)$. E - real-valued, strictly concave, Hessian at 0 is negative-definite.
- For $\lambda \approx 0$, $\Gamma_\lambda := \{\beta \mid E(\beta) = \lambda\}$ is strictly convex, compact.
- For $s \in S^{d-1}$, β_s - unique point on Γ_λ s.t. $-\frac{\nabla E(\beta_s)}{|\nabla E(\beta_s)|} = s$
Notations in the main theorem

Define $E(\beta) := \lambda_j(k_0 + i\beta)$. E – real-valued, strictly concave, Hessian at 0 is negative-definite.

For $\lambda \approx 0$, $\Gamma_\lambda := \{\beta \mid E(\beta) = \lambda\}$ is strictly convex, compact.

For $s \in S^{d-1}$, β_s – unique point on Γ_λ s.t. $-\frac{\nabla E(\beta_s)}{|\nabla E(\beta_s)|} = s$.
Notations in the main theorem (Cont.)
Notations in the main theorem (Cont.)

- \mathcal{P}_s – projection from \mathbb{R}^d onto the tangent space of the unit sphere \mathbb{S}^{d-1} at the point s.
Notations in the main theorem (Cont.)

- \mathcal{P}_s – projection from \mathbb{R}^d onto the tangent space of the unit sphere S^{d-1} at the point s.

- By A1-A2 and analytic perturbation theory, λ_j is holomorphic around 0.
Notations in the main theorem (Cont.)

- \mathcal{P}_s – projection from \mathbb{R}^d onto the tangent space of the unit sphere \mathbb{S}^{d-1} at the point s.

- By A1-A2 and analytic perturbation theory, λ_j is holomorphic around 0.
 - $\lambda_j(z)$ is a simple eigenvalue of $L(z)$.

Minh Kha (Texas A&M) Joint with P. Kuchment (Texas A&M) Prairie Analysis Seminar 2015, Kansas State University, Manhattan, Kansas.
Notations in the main theorem (Cont.)

- \mathcal{P}_s – projection from \mathbb{R}^d onto the tangent space of the unit sphere \mathbb{S}^{d-1} at the point s.

- By A1-A2 and analytic perturbation theory, λ_j is holomorphic around 0

$\lambda_j(z)$ is a simple eigenvalue of $L(z)$

$\phi_z(x)$ – the corresponding \mathbb{Z}^d-periodic eigenfunctions of $L(z)$
The main result

Theorem (M.K, P. Kuchment, and A. Raich 2014)

Suppose conditions A1-A5 are satisfied. For $\lambda < 0$ sufficiently close to 0 (depending on the dispersion branch λ_j and the operator L), G_λ of L at λ admits the asymptotics as $|x - y| \to \infty$:

$$G_\lambda(x, y) = \frac{e^{(x-y)(ik_0-\beta_s)}}{(2\pi|x - y|)^{(d-1)/2}} \frac{|\nabla E(\beta_s)|^{(d-3)/2}}{\det (-P_s\text{Hess}E(\beta_s)P_s)^{1/2}}$$

$$\times \frac{\phi_{k_0+i\beta_s}(x)\phi_{k_0-i\beta_s}(y)}{(\phi_{k_0+i\beta_s}, \phi_{k_0-i\beta_s})_{L^2(\mathbb{T})}} + e^{(y-x)\cdot \beta_s}r(x, y).$$

Here $s = (x - y)/|x - y|$ and $\forall \varepsilon > 0$, $\exists C_\varepsilon > 0$ (independent of s) s.t. the remainder term r satisfies $|r(x, y)| \leq C_\varepsilon |x - y|^{-d/2+\varepsilon}$ when $|x - y|$ is large enough.
Generalization on abelian coverings

- X- noncompact Riemannian manifold, $d_X(\cdot, \cdot)$- Riemannian distance on X
Generalization on abelian coverings

- X - noncompact Riemannian manifold, $d_X(\cdot, \cdot)$ - Riemannian distance on X
- G - finitely generated abelian discrete deck group
Generalization on abelian coverings

- X: noncompact Riemannian manifold, $d_X(\cdot, \cdot)$: Riemannian distance on X
- G: finitely generated abelian discrete deck group
- $G \acts X$: isometric, properly discontinuous, free and co-compact action
Generalization on abelian coverings

- X: noncompact Riemannian manifold, $d_X(\cdot, \cdot)$: Riemannian distance on X
- G: finitely generated **abelian** discrete deck group
- $G \curvearrowright X$: **isometric**, **properly discontinuous**, **free** and **co-compact** action
- $X \xrightarrow{\pi} M := X/G$: a normal **abelian** covering of a compact Riemannian manifold.
Generalization on abelian coverings

- X: noncompact Riemannian manifold, $d_X(\cdot, \cdot)$- Riemannian distance on X
- G: finitely generated **abelian** discrete deck group
- $G \curvearrowright X$: **isometric, properly discontinuous, free and co-compact** action
- $X \xrightarrow{\pi} M := X/G$: a normal **abelian** covering of a compact Riemannian manifold.

Goal: Extend the main result in Euclidean case to this setting, i.e. Green’s function asymptotics of a periodic elliptic operator L on X.
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green’s functions of periodic elliptic operators

Generalization on abelian coverings

- X - noncompact Riemannian manifold, $d_X(\cdot, \cdot)$ - Riemannian distance on X
- G - finitely generated abelian discrete deck group
- $G \curvearrowright X$: isometric, properly discontinuous, free and co-compact action
- $X \xrightarrow{\pi} M := X/G$: a normal abelian covering of a compact Riemannian manifold.

Goal: Extend the main result in Euclidean case to this setting, i.e. Green’s function asymptotics of a periodic elliptic operator L on X.
Idea: Large scale geometry of X is captured mostly by its deck group G (Gromov’s ideology)
Generalization on abelian coverings

- X- noncompact Riemannian manifold, $d_X(\cdot, \cdot)$- Riemannian distance on X
- G- finitely generated **abelian** discrete deck group
- $G \curvearrowright X$: **isometric**, **properly discontinuous**, **free** and **co-compact** action
- $X \xrightarrow{\pi} M := X/G$: a normal **abelian** covering of a compact Riemannian manifold.

Goal: Extend the main result in Euclidean case to this setting, i.e. Green’s function asymptotics of a periodic elliptic operator L on X.

Idea: Large scale geometry of X is captured mostly by its deck group G (Gromov’s ideology)

WLOG, assume $G = \mathbb{Z}^d$.
Generalization on abelian coverings (Cont.)

Additive function on abelian covering \(X \)

- \(\exists \) smooth \(h : X \to \mathbb{R}^d \) i.e. \(h(g \cdot x) = h(x) + g \),
 \(\forall g \in \mathbb{Z}^d, x \in X \).
Additive function on abelian covering X

- \exists smooth $h : X \to \mathbb{R}^d$ i.e. $h(g \cdot x) = h(x) + g$,
 $\forall g \in \mathbb{Z}^d, x \in X$.

- $|h(x) - h(y)| \simeq d_X(x, y)$ when x, y are sufficiently far.
Decay of the resolvents for $-\Delta$
Periodic PDOs and dispersion relations
Asymptotics of Green's functions of periodic elliptic operators

Generalization on abelian coverings (Cont.)

Additive function on abelian covering X

- \exists smooth $h : X \rightarrow \mathbb{R}^d$, i.e. $h(g \cdot x) = h(x) + g$, $\forall g \in \mathbb{Z}^d, x \in X$.

- $|h(x) - h(y)| \simeq d_X(x, y)$ when x, y are sufficiently far.

Floquet-Bloch theory, assumptions and notations

- $\sigma(L)$ has band-gap structure.
Generalization on abelian coverings (Cont.)

Additive function on abelian covering X

- \exists smooth $h : X \to \mathbb{R}^d$, i.e. $h(g \cdot x) = h(x) + g$,
 $\forall g \in \mathbb{Z}^d, x \in X$.
- $|h(x) - h(y)| \simeq d_X(x, y)$ when x, y are sufficiently far.

Floquet-Bloch theory, assumptions and notations

- $\sigma(L)$ has **band-gap** structure.
- Dispersion relations, band functions, gaps etc still make sense.
Additive function on abelian covering X

- \exists smooth $h : X \to \mathbb{R}^d$ i.e. $h(g \cdot x) = h(x) + g$,
 $\forall g \in \mathbb{Z}^d, x \in X$.

- $|h(x) - h(y)| \simeq d_X(x, y)$ when x, y are sufficiently far.

Floquet-Bloch theory, **assumptions** and **notations**

- $\sigma(L)$ has **band-gap** structure.

- Dispersion relations, band functions, gaps etc still make sense.

- Assume the spectral edge is 0.
Generalization on abelian coverings (Cont.)

Additive function on abelian covering X

- \exists smooth $h : X \to \mathbb{R}^d$ i.e. $h(g \cdot x) = h(x) + g$, $\forall g \in \mathbb{Z}^d, x \in X$.

- $|h(x) - h(y)| \simeq d_X(x, y)$ when x, y are sufficiently far.

Floquet-Bloch theory, assumptions and notations

- $\sigma(L)$ has band-gap structure.

- Dispersion relations, band functions, gaps etc still make sense.

- Assume the spectral edge is 0.

- Notations E, β_s, P_s, ϕ_z: similar to flat case.
Under the conditions \(\textbf{A1-A5} \), for \(\lambda < 0, \lambda \approx 0 \), then \(G_\lambda \) of \(L \) at \(\lambda \) admits the asymptotics as \(d_X(x, y) \to \infty \):

\[
G_\lambda(x, y) = \frac{e^{(h(x)-h(y))(ik_0-\beta_s)}}{(2\pi|h(x)-h(y)|)^{(d-1)/2}} \frac{|\nabla E(\beta_s)|^{(d-3)/2}}{\det(-P_s \text{Hess}E(\beta_s)P_s)^{1/2}} \times \frac{\phi_{k_0+i\beta_s}(x)\phi_{k_0-i\beta_s}(y)}{(\phi_{k_0+i\beta_s}, \phi_{k_0-i\beta_s})_{L^2(M)}} + e^{(h(y)-h(x)).\beta_s} r(x, y).
\]

Here \(s = (h(x)-h(y))/|h(x)-h(y)| \) and \(\forall \varepsilon > 0, \exists C_\varepsilon > 0 \) (independent of \(s \)) s.t. the remainder term \(r \) satisfies \(|r(x, y)| \leq C_\varepsilon d_X(x, y)^{-d/2+\varepsilon} \) when \(d_X(x, y) \) is large enough.
Thank you for your attention today!