Quantum graph model of a graphyne and graphyne nanotubes

Ngoc Do and Peter Kuchment
Texas A & M University

September 26th, 2015
Graphene - 2D hexagonal carbon allotrope
Graphene - 2D hexagonal carbon allotrope

2010 Nobel prize in physics.
Wonderful properties: stronger than steel, transparent, better electric conductivity than copper.
Band functions and spectral bands. Might cross/overlap.
Dirac points

Why remarkable electric properties?
Dirac points

Why remarkable electric properties?
Stable Dirac points!
Dirac points

Why remarkable electric properties?
Stable Dirac points!
Dirac points

Why remarkable electric properties?
Stable Dirac points!

- Physicists: the honeycomb lattice symmetry of the structure
Dirac points

Why remarkable electric properties?
Stable Dirac points!

- Physicists: the honeycomb lattice symmetry of the structure
- Quantum graph model - P. Kuchment and O. Post
- 2D Schrödinger - C. Fefferman, M. Weinstein, G. Berkolaiko, A. Comech
Dirac points

Why remarkable electric properties?
Stable Dirac points!

- Physicists: the honeycomb lattice symmetry of the structure
- Quantum graph model - P. Kuchment and O. Post
- 2D Schrödinger - C. Fefferman, M. Weinstein, G. Berkolaiko, A. Comech
Graphynes: other 2D carbon allotropes.
Graphyne

Graphynes: other 2D carbon allotropes.

Different symmetry group.
Graphyne: other 2D carbon allotropes.

Different symmetry group.
Need to be synthesized.
Graphyne

Graphynes: other 2D carbon allotropes.

Different symmetry group.
Need to be synthesized.
High promise.
Nanotubes

Carbon nanotubes: layers of graphene/graphyne rolled onto a cylinder
Carbon nanotubes: layers of graphene/graphyne rolled onto a cylinder

Spectrum depends on the type of nanotubes.
Graphyne and Schrödinger operators

Quantum graph model of a graphyne and graphyne nanotubes
Graphyne and Schrödinger operators

Quantum graph = graph + metric + differential operator
Graphyne and Schrödinger operators

Quantum graph = graph + metric + differential operator

Ngoc Do and Peter Kuchment Texas A & M University
Quantum graph model of a graphyne and graphyne nanotubes
Graphyne and Schrödinger operators

Quantum graph = graph + metric + differential operator

Less symmetry!!!
Quantum graph = graph + metric + differential operator

Less symmetry!!!

\[H = -\frac{d^2}{dx^2} + q(x) \]
Quantum graph = graph + metric + differential operator

Less symmetry!!!

\[H = - \frac{d^2}{dx^2} + q(x) \]

\[q_0(x) \] - even real potential on \([-0.5,0.5]\] transferred to invariant potential \(q(x) \)
Graphyne and Schrödinger operators

Quantum graph = graph + metric + differential operator

Less symmetry!!!

\[H = -\frac{d^2}{dx^2} + q(x) \]

\(q_0(x) \) - even real potential on \([-0.5,0.5]\) transferred to invariant potential \(q(x) \)

Neumann vertex condition
Graphyne nanotubes and Schrödinger operators

Graphyne nanotube $T_p, p = (3, 1)$
Graphyne nanotubes and Schrödinger operators

Graphyne nanotube T_p, $p = (3, 1)$

\[H_p = -\frac{d^2}{dx^2} + q(x) \]

$u(x)$ is a function on G s.t. $u(x + p_1e_1 + p_2e_2) = u(x)$.
Graphyne nanotubes and Schrödinger operators

Graphyne nanotube $T_p, p = (3, 1)$

$$H_p = -\frac{d^2}{dx^2} + q(x)$$

$u(x)$ is a function on G s.t. $u(x + p_1e_1 + p_2e_2) = u(x)$. Neumann vertex condition
Graphyne spectrum

\[\sigma_{sc}(H) = \emptyset \]

\[\sigma_{ac}(H) = \sigma(H_{\text{per}}) \]

\[H_{\text{per}} = -\frac{d^2}{dx^2} + q(x) \text{ on } \mathbb{R} \]

\[\sigma_{pp}(H) = \sum D \] and is located at band edges

\[\sum D \text{ of } -\frac{d^2}{dx^2} + q_0(x) \text{ on } [-0.5,0.5] \]

Eigenvalues \(\lambda \in \sigma_{pp}(H) \) - infinite multiplicity

Description of all compactly bounded eigenfunctions - generators

Each band of \(\sigma(H_{\text{per}}) \) consists of three touching bands of \(\sigma(H) \)

Stable Dirac cones at touching points of spectral bands

Ngoc Do and Peter Kuchment Texas A & M University

Quantum graph model of a graphyne and graphyne nanotubes
Graphyne spectrum

\[\sigma_{sc}(H) = \emptyset \]
Graphyne spectrum

- $\sigma_{sc}(H) = \emptyset$
- $\sigma_{ac}(H) = \sigma(H_{per})$

$$H_{per} = -\frac{d^2}{dx^2} + q(x) \text{ on } \mathbb{R}$$
Graphyne spectrum

- $\sigma_{sc}(H) = \emptyset$
- $\sigma_{ac}(H) = \sigma(H_{\text{per}})$

$$H_{\text{per}} = -\frac{d^2}{dx^2} + q(x) \text{ on } \mathbb{R}$$

- $\sigma_{pp}(H) = \Sigma_D$ and is located at band edges
 - Σ_D - Dirichlet spectrum of $-d^2/dx^2 + q_0(x)$ on $[-0.5,0.5]$
Graphyne spectrum

- \(\sigma_{sc}(H) = \emptyset \)
- \(\sigma_{ac}(H) = \sigma(H_{\text{per}}) \)

\[
H_{\text{per}} = -\frac{d^2}{dx^2} + q(x) \quad \text{on } \mathbb{R}
\]

- \(\sigma_{pp}(H) = \Sigma_D \) and is located at band edges

\(\Sigma_D \) - Dirichlet spectrum of \(-d^2/dx^2 + q_0(x)\) on \([-0.5,0.5]\)

Eigenvalues \(\lambda \in \sigma_{pp}(H) \) - infinite multiplicity

Description of all compactly bounded eigenfunctions - generators
Graphyne spectrum

• \(\sigma_{sc}(H) = \emptyset \)
• \(\sigma_{ac}(H) = \sigma(H_{per}) \)

\[H_{per} = -\frac{d^2}{dx^2} + q(x) \text{ on } \mathbb{R} \]

• \(\sigma_{pp}(H) = \Sigma_D \) and is located at band edges
\[\Sigma_D \text{ - Dirichlet spectrum of } -d^2/dx^2 + q_0(x) \text{ on } [-0.5,0.5] \]

Eigenvalues \(\lambda \in \sigma_{pp}(H) \) - infinite multiplicity

Description of all compactly bounded eigenfunctions - generators

• Each band of \(\sigma(H_{per}) \) consists of three touching bands of \(\sigma(H) \)
Graphyne spectrum

- $\sigma_{sc}(H) = \emptyset$
- $\sigma_{ac}(H) = \sigma(H_{\text{per}})$

\[H_{\text{per}} = -\frac{d^2}{dx^2} + q(x) \text{ on } \mathbb{R} \]

- $\sigma_{pp}(H) = \Sigma_D$ and is located at band edges
- Σ_D - Dirichlet spectrum of $-d^2/dx^2 + q_0(x)$ on $[-0.5, 0.5]$

Eigenvalues $\lambda \in \sigma_{pp}(H)$ - infinite multiplicity

Description of all compactly bounded eigenfunctions - generators

- Each band of $\sigma(H_{\text{per}})$ consists of three touching bands of $\sigma(H)$
Graphyne spectrum

- $\sigma_{sc}(H) = \emptyset$
- $\sigma_{ac}(H) = \sigma(H_{\text{per}})$

$$H_{\text{per}} = -\frac{d^2}{dx^2} + q(x) \text{ on } \mathbb{R}$$

- $\sigma_{pp}(H) = \Sigma_D$ and is located at band edges
- Σ_D - Dirichlet spectrum of $-d^2/dx^2 + q_0(x)$ on $[-0.5,0.5]$

Eigenvalues $\lambda \in \sigma_{pp}(H)$ - infinite multiplicity

Description of all compactly bounded eigenfunctions - generators

- Each band of $\sigma(H_{\text{per}})$ consists of three touching bands of $\sigma(H)$

- **Stable Dirac cones** at touching points of spectral bands
Graphyne spectrum

- $\sigma_{sc}(H) = \emptyset$
- $\sigma_{ac}(H) = \sigma(H_{per})$
- $H_{per} = -\frac{d^2}{dx^2} + q(x)$ on \mathbb{R}
- $\sigma_{pp}(H) = \Sigma_D$ and is located at band edges
 - Σ_D - Dirichlet spectrum of $-d^2/dx^2 + q_0(x)$ on $[-0.5,0.5]$
 - Eigenvalues $\lambda \in \sigma_{pp}(H)$ - infinite multiplicity
 - Description of all compactly bounded eigenfunctions - generators
 - Each band of $\sigma(H_{per})$ consists of three touching bands of $\sigma(H)$

- Stable Dirac cones at touching points of spectral bands
Graphyne nanotubes spectrum

- \(\sigma_{sc}(H_p) = \emptyset \)
Graphyne nanotubes spectrum

• $\sigma_{sc}(H_p) = \emptyset$

• $\sigma_{ac}(H_p)$ has band gap structure
 Additional gaps may open (comparing to $\sigma_{ac}(H)$)
Graphyne nanotubes spectrum

- $\sigma_{sc}(H_p) = \emptyset$

- $\sigma_{ac}(H_p)$ has band gap structure
 Additional gaps may open (comparing to $\sigma_{ac}(H)$)

- $\sigma_{pp}(H_p)$ contains Σ_D
 Possible extra pure point spectrum
Graphyne nanotubes spectrum

- $\sigma_{sc}(H_p) = \emptyset$

- $\sigma_{ac}(H_p)$ has band gap structure
 Additional gaps may open (comparing to $\sigma_{ac}(H)$)

- $\sigma_{pp}(H_p)$ contains Σ_D
 Possible extra pure point spectrum

Eigenvalues - infinite multiplicity
Compactely supported eigenfunctions generating eigenspaces are provided (simple/tube loop eigenfunctions)
Graphyne nanotubes spectrum

• $\sigma_{sc}(H_p) = \emptyset$

• $\sigma_{ac}(H_p)$ has band gap structure
 Additional gaps may open (comparing to $\sigma_{ac}(H)$)

• $\sigma_{pp}(H_p)$ contains Σ_D
 Possible extra pure point spectrum

Eigenvalues - infinite multiplicity
Compactly supported eigenfunctions generating eigenspaces are provided (simple/tube loop eigenfunctions)
'y' versus 'e'

Why could graphyne be better than graphene?
Why could graphyne be better than graphene?

Stable Dirac points
Directionality

Directional conductance

Ngoc Do and Peter Kuchment Texas A & M University

Quantum graph model of a graphyne and graphyne nanotubes
Reduction from quantum graph to discrete graph model
1. Reduction from quantum graph to discrete graph model
 • Reduce study from infinite graph to fundamental domain using Floquet-Bloch theory.
Proof outline

1. Reduction from quantum graph to discrete graph model
 • Reduce study from infinite graph to fundamental domain using Floquet-Bloch theory.
 • Switch to the discrete problem (Hill’s operator theory is involved here)
Proof outline

1. Reduction from quantum graph to discrete graph model
 • Reduce study from infinite graph to fundamental domain using Floquet-Bloch theory.
 • Switch to the discrete problem (Hill’s operator theory is involved here)

2. Analyze explicitly (construct the eigenfunctions-generators)
References

Thank you!