Below you will find 10 problems, each worth 10 points. Solve the problems in the space provided. When writing a solution to a problem, show all work. No books or notes are allowed. Sign and submit your formula sheet with the exam.

Problem 1. Convert the units as indicated:

(a) 98.765° to degrees, minutes and seconds.

(b) $\frac{11\pi}{24}$ (radians) to degrees, minutes and seconds.
Problem 2. Find two positive coterminal angles and one negative coterminal angle for each of the following angles:

(a) -130° (use degrees);

(b) $\frac{7\pi}{6}$ (use radians).

Problem 3. An angle θ, in standard position, is located in the third quadrant and has $\cot \theta = \frac{12}{5}$. Find the exact values of $\sin \theta$ and $\cos \theta$.

Problem 4. Find the exact values of $\sin \left(-\frac{7\pi}{4}\right)$ and $\cos \left(-\frac{7\pi}{4}\right)$.
Problem 5. Find the length of the arc that subtends the angle 100° on a circle of diameter 8 in. You can give your answer either as a decimal (rounded to two decimal places), or as a fraction of π.

Problem 6. Prove the identity:

$$\tan t (\csc^2 t - 1) = \cot t.$$

Problem 7. The angle θ is an acute angle in the right triangle shown in the figure.

Find the exact values of all six trigonometric functions of θ.

\[
\begin{array}{c}
 65 \\
 \theta \\
 52 \\
\end{array}
\]
Problem 8. Find the exact values of t, in the interval $[-4\pi, 2\pi]$, which satisfy the equation

$$ \cos t = \frac{\sqrt{2}}{2}. $$

Problem 9. Find the side labeled x in the right triangle:

![Right Triangle]

Problem 10. Let θ be an angle in standard position, such that the point $P(-2, 5)$ is on its terminal side. Find the exact values of all the six trigonometric functions of θ.