Below you will find 10 problems, each worth 10 points. Solve the problems in the space provided. When writing a solution to a problem, show all work. No books or notes are allowed. Sign and submit your formula sheet with the exam.

Problem 1. A triangle ABC has $a = 5$ in, $b = 6$ in, and $\hat{A} = 20^\circ$. Find the remaining parts: \hat{B}, \hat{C}, and c. (Express all angles in degrees. Round to two decimal places.)

Caution: This problem has two solutions! Find both of them.
Problem 2. A triangle ABC has $b = 5$ in, $c = 12$ in, and $\hat{A} = 60^\circ$. Find the remaining parts: \hat{B}, \hat{C}, and a. (Express all angles in degrees. Round to two decimal places.)

Problem 3. A triangle ABC has $a = 7$ in, $\hat{B} = 40^\circ$, and $\hat{C} = 60^\circ$. Find the remaining parts: \hat{A}, b, and c. (Express all angles in degrees. Round to two decimal places.)

Problem 4. A triangle ABC has $a = 8$ in, $b = 11$ in, and $c = 7$ in. Find the remaining parts: \hat{A}, \hat{B}, and \hat{C}. (Express all angles in degrees. Round to two decimal places.)
Problem 5. In each of the two questions below, compute the area of the triangle ABC. Use exact values.

(a) Given $a = \sqrt{3}$ in, $c = 12$ in, and $\hat{B} = 60^\circ$.

(b) Given $a = 5$ in, $b = 5$ in, and $c = 6$ in.

Problem 6. Given two angles α and β in the second quadrant, with $\sin \alpha = \frac{8}{17}$, and $\cos \beta = -\frac{12}{13}$, find the exact values of $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$.

Problem 7. Find all solutions of $\tan \left(2t + \frac{\pi}{6}\right) = -\sqrt{3}$. Use exact values.
Problem 8. Find all solutions of \(\cos^2 y - \cos y - 2 = 0 \). Use exact values.

Problem 9. Find the geometric angle formed by the vectors \(\vec{u} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \) and \(\vec{v} = \begin{bmatrix} -7 \\ 1 \end{bmatrix} \). Use exact values.

Problem 10. Consider the polar equation \(r = \frac{6}{r + \sin \theta} \). Find the equation in rectangular coordinates (that is, \(x \) and \(y \)) which has the same graph as the given polar equation.