1. Let \(W_1 \subseteq V \) and \(W_2 \subseteq V \) be two subspaces of a vector space \(V \). Assume that \(V \) is equal to the union \(V = W_1 \cup W_2 \). Prove that either \(V = W_1 \) or \(V = W_2 \).
2. Let $U \subseteq V$ be a subspace of a finite dimensional vector space V. Prove that there exists a subspace $W \subseteq V$ such that V is the internal direct sum $V = U \oplus W$.
3. Let V be a vector space over a field F. Let $f, g : V \rightarrow F$ be two linear functionals such that $f(v) = 0$ implies $g(v) = 0$. Prove there exists a scalar $\lambda \in F$ such that $g(v) = \lambda \cdot f(v)$ for all $v \in V$.
4. Let $F \subseteq K$ be a field extension, and assume $\alpha \in K$ is an algebraic element of odd degree. Prove that α^2 is an algebraic element of odd degree, and that $F(\alpha^2) = F(\alpha)$.
5. Let $f, g \in F[x]$ be two polynomials with coefficients in a field F. Let $h_1 \in F[x]$ be a greatest common divisor of f and g in $F[x]$. Let $F \subseteq K$ be a field extension. Let $h_2 \in K[x]$ be a greatest common divisor of f and g in $K[x]$. Prove that h_1 and h_2 are associates in $K[x]$. (Hint: In a Euclidean domain R, a GCD is a generator of the principal ideal consisting of all linear combinations.)