1. Let A, B, and S be n-by-n matrices over a field F with S invertible and $S^{-1}AS = B$.

(a) Prove that A and B have the same characteristic polynomial. [Hint: Use the Multiplication Theorem for determinants.]

(b) Prove that if B is a diagonal matrix, then each diagonal entry in B is an eigenvalue of A.
2. Use 1.(b) to prove (by contradiction) that if \(A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \), then there is no \(S \in M_2(\mathbb{C}) \) for which \(S^{-1}AS \) is diagonal.

3. Let \(V \) be a complex inner product space, let \(T : V \to V \) be linear, and let \(\lambda \) be an eigenvalue of \(T \). Prove that

(a) \(T \) is unitary \(\Rightarrow |\lambda| = 1 \) and

(b) \(T \) is self-adjoint (i.e., Hermitian) \(\Rightarrow \lambda \in \mathbb{R} \).
4. Consider the Hermitian matrix \(H = \begin{bmatrix} 2 & i \\ -i & 2 \end{bmatrix} \). Find a unitary matrix \(U \) such that \(U'HU \) is diagonal. [The inner product in \(\mathbb{C}^2 \) is \((a, b) = a \cdot \bar{b}\).]

5. Find a spectral decomposition for the matrix \(H \) in problem 4. That is, find self-adjoint matrices \(E_1 \) and \(E_2 \) in \(M_2(\mathbb{C}) \) with \(E_1E_2 = E_2E_1 = 0 \), \(E_1 + E_2 = I \), and \(H = \alpha E_1 + \beta E_2 \) where \(\alpha \) and \(\beta \) are the eigenvalues of \(H \).