(7 pts) 1. Let $f(x)$ be a polynomial in $F[x]$ which has no multiple roots in any extension field of F. If K is the splitting field of $f(x)$ over F, and $G = Gal(K/F)$, show that $f(x)$ is irreducible in $F[x]$ if and only if G transitively permutes the roots of $f(x)$ in K.
(7 pts) 2. Consider the matrix of rational entries \(A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \).

If \(R = \mathbb{Q}[A] \) is the ring of polynomials in \(A \) with rational coefficients, prove that \(R \) is a field. (Hint: Consider the homomorphism \(\mathbb{Q}[x] \to \mathbb{Q}[A] \), where \(x \mapsto A \).)
(7 pts) 3. Let R be a commutative ring and N be the set of all nilpotent elements in R. (An element x in a ring is called nilpotent if $x^n = 0$ for some nonnegative integer n.)

(a) Show that N is an ideal of R.

(b) Is the statement (a) still correct without the commutativity condition on R? Prove or give an example.
(7 pts) 4. Let $n > 1$ be a positive integer. Calculate the degree of the splitting field of $f(x) = x^n - 2$ over the field of rational numbers \mathbb{Q}.
(8 pts) 5. Let R be a ring. Prove that the following three conditions are equivalent for the left R-module M.

(i) Any increasing chain of submodules $M_1 \subseteq M_2 \subseteq \ldots$, of M eventually stabilizes.

(ii) Any submodule of M is finitely generated.

(iii) Any family of submodules of M has a maximal member with respect to inclusion.
(8 pts) 6. Recall that a ring is called Noetherian if every ascending chain of ideals terminates. Show that any PID is Noetherian. Give an example of a Noetherian integral domain which is not a PID.
(8 pts) 7. Let V be an n-dimensional vector space over a field F, and let

$$V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_n = 0$$

be a chain of subspaces of V, with $\dim(V_i/V_{i+1}) = 1$ for $i = 0, 1, \ldots, n - 1$. Suppose that $T : V \to V$ is a linear transformation satisfying $T(V_i) \subseteq V_{i+1}$ for all $i = 0, 1, \ldots, n - 1$. Compute the characteristic polynomial of T.
(8 pts) 8. Let M be a Noetherian R-module and let $\phi : M \to M$ be a surjective R-module homomorphism. Prove that ϕ is injective. (Hint: consider the increasing sequence of submodules $0 \subseteq \ker \phi \subseteq \ker \phi^2 \subseteq \ldots$)