(10 pts.) 1.(a) Show that exactly 4 vector subspaces of the plane \(\mathbb{R}^2 \) are invariant under the linear transformation \(T = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \in M_2(\mathbb{R}) \).

(b) Give any 2 × 2 real matrix \(S \in M_2(\mathbb{R}) \) such that exactly 3 vector subspaces of the plane \(\mathbb{R}^2 \) are invariant under \(S \).
(10 pts.) 2. The complex numbers \(\mathbb{C} \) are a vector space over the field of real numbers \(\mathbb{R} \). Let \(T : \mathbb{C} \to \mathbb{C} \) be the map \(T(z) = (3 + 2i)z \) for \(z \in \mathbb{C} \). Prove that \(T \) is linear transformation, and compute the determinant \(\det(T) \).
(10 pts.) 3. Let $F \subseteq K$ be a field extension, and assume $\alpha \in K$ is an algebraic element of odd degree. Prove that α^2 is an algebraic element of odd degree, and that $F(\alpha^2) = F(\alpha)$.
(12 pts.) 4. Let $T : V \to W$ be a surjective linear map of vector spaces over a field F. Let $B \subseteq W$ be a vector subspace, and define $A = T^{-1}(B) = \{ v \in V \mid T(v) \in B \}$. Prove that the quotient vector space V/A is isomorphic to the quotient W/B.
(12 pts.) 5. (a) Let A and B be 2×2 matrices, A and $B \in M_2(F)$. Explain why the matrices AB and BA have the same characteristic polynomial.

(b) Let $S : V \to V$ and $T : V \to V$ be two linear transformations of a finite dimensional vector space V over a field F. Prove that $\lambda \in F$ is an eigenvalue of the composition $S \circ T$ if and only if λ is an eigenvalue of $T \circ S$.
(12 pts.) 6. Let V be a finite dimensional inner product space over the complex numbers. Let $f : V \to \mathbb{C}$ be a linear functional. Prove there exists a vector $u_0 \in V$ such that $f(v) = \langle v, u_0 \rangle$ for all $v \in V$.
(12 pts.) 7. (a) Prove that $f(x) = x^4 - 2x^2 - 1$ is irreducible in $\mathbb{Q}[x]$. (Hint: Compute $f(x + 1)$.)

(b) Show that the splitting field K for $f(x) = x^4 - 2x^2 - 1$ over the rational numbers \mathbb{Q} is of degree $[K : \mathbb{Q}] = 8$.
(12 pts.) 8. Let $T : V \to V$ be a linear transformation of a finite dimensional vector space V over a field F. Assume the minimal polynomial $p(x) \in F[x]$ for T factors as $p(x) = f(x)g(x)$ in $F[x]$, and assume that $f(x)$ and $g(x)$ are relatively prime (so there exist polynomials $h(x)$ and $k(x)$ in $F[x]$ such that $f(x)h(x) + g(x)k(x) = 1$). Note that $f(T)$ and $g(T)$ are linear transformations of V. Prove that V is the direct sum $V = \ker (f(T)) \oplus \ker (g(T))$.