(15) 1) A mass distribution occupies the region in 3-space enclosed by the surfaces $z = \sqrt{x^2 + y^2}$ and $z = 2$. Its mass density function is $\delta(x, y, z) = x^2 + y^2 + z^2$. Use a triple integral in spherical coordinates to calculate the total mass.
(15) 2) Find the surface area of the parametrized surface $x = t, y = t^2, z = ts^3$, $0 \leq t \leq 2$ and $1 \leq s \leq 3$.
3) Evaluate the line integral \(\int_C xy \, dx + x \, dy \) where \(C \) consists of the line segment from \((2, -4)\) to \((2, 0)\) followed by the arc of the circle \(x^2 + y^2 = 4 \) from \((2, 0)\) to \((0, 2)\) which is in the first quadrant.
(10) 4) Show that the Force field

$$\vec{F} = \left(2 + \frac{2x}{1 + y} \right) \vec{i} + \left(2y - \frac{x^2}{(1 + y)^2} \right) \vec{j}$$

is conservative in the region $y > -1$ by finding a potential function for it. Now calculate the work done by \vec{F} as it acts on an object which moves from $(1, 0)$ to $(9, 3)$ along any piecewise smooth curve in the region $y > -1$.
Use Green’s theorem to evaluate

\[\int_C (xy + y^3 \cos x)\,dx + (3y^2 \sin x + x^2)\,dy \]

where \(C \) is the closed curve consisting of the sides of the triangle having vertices \((0,0), (2,0), (0,2)\), directed counterclockwise.
6) Use Green’s theorem in vector form to calculate the outward flux $\int_C \vec{F} \cdot \vec{n} \, ds$

where $\vec{F} = xy^2 \hat{i} + x^2 y \hat{j}$ and C is the circle $x^2 + y^2 = 4$.
(15) 7) Evaluate the surface integral \(\int \int_S 12xy \, dS \) where \(S \) is that part of \(z = \sqrt{25 - x^2 - y^2} \) which lies above the square \(0 \leq x \leq 1, \ 0 \leq y \leq 1. \)