1. Find the tangent plane to the given surface at the specified point.

 a) To the graph of $f(x, y) = xy$ at the point $(x, y, z) = (2, 3, 6)$.

 b) To $x^3y + y^3z + xz^3 = 53$ at $(x, y, z) = (1, 2, 3)$.

2. Let \(f(x, y) = y\sqrt{x^2 + y^2} \).

a) Find the gradient vector field of \(f \).

\[\nabla f = \]

b) Find the directional derivative of \(f \) at \((x, y) = (3, 4)\) in the direction of the vector \(\mathbf{v} = 2\mathbf{i} - \mathbf{j} \).

c) Find a vector which points in the direction that gives the largest directional derivative for \(f \) at \((3, 4)\). What is the value of this largest directional derivative?
(20) 3. Find and classify the critical points of \(f(x, y) = 4xy - y^4 - x^2 \).
(15) 4. Use the method of Lagrange multipliers to find the largest value and
the smallest value of $f(x, y) = x^2 + 2x - y^2$ on the circle $x^2 + y^2 = 16$.
5. Use a double integral to calculate the volume of the 3-D region which is under \(z = 1 + xy \) and above the region in the first quadrant of the \(xy \)-plane which is bounded by \(y = 2x, x = 0 \) and \(y = 4 \).
NAME

Rec. Instr.

(10) 6. Evaluate \[\int_{0}^{2} \int_{y^2}^{4} \sqrt{1 + x \sqrt{x}} \, dx \, dy \] by first reversing the order of integration.
7. Use a double integral to calculate the volume of the 3-D region which is enclosed by the paraboloids $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$. Use polar coordinates to evaluate the double integral.