1. Given the points $P(1, -1, 1), Q(1, 0, 1)$ and $R(0, 1, 2)$ in 3-space.

 a) Find the angle, in degrees, at the vertex R of the triangle with vertices P, Q and R.

 b) Find the area of the triangle having vertices P, Q and R.
c) Find the equation of the plane containing the points \(P, Q \) and \(R \).

d) Find the equations for the line through \(P \) which is perpendicular to the plane containing the triangle having vertices \(P, Q \) and \(R \).
2. Given vectors \(\vec{a} = 2i + j - k \), \(\vec{b} = i + j - 5k \) and \(\vec{c} = i + 2j - k \) find
 a) The area of the parallelogram determined by \(\vec{a} \) and \(\vec{b} \).
 b) The volume of the parallelepiped determined by \(\vec{a} \), \(\vec{b} \) and \(\vec{c} \).
3. Given the two planes $2x - y + 3z = 2$ and $2x + 2y + 2z = 0$
 a) Find the angle (acute) between the planes.

 b) Find the distance from the point $P(1, 0, 3)$ and the plane $2x - y + 3z = 2$.
4. An object is moving in 3-space in such a way that it’s acceleration vector is $\vec{a} = -3j - \cos(t)k$. Suppose that at time $t = 0$ it’s velocity vector is $\vec{v}(0) = 2i$ and it’s position vector is $\vec{r}(0) = i + k$. Find the velocity vector and the position vector as functions of t. Then give the parametric equations of the motion.
5. Classify and sketch the following surfaces.

a) \(3x + 4z = 12\)

b) \(\frac{x^2}{4} - \frac{y^2}{9} - z^2 = 1\)

c) \(\frac{x^2}{4} - \frac{y^2}{9} - z^2 = 0\)