(20) 1) Given the points $P(1, 0, 1), Q(1, 1, 0)$ and $R(0, 1, 4)$ in 3-space.
 a) Find the angle, in degrees, at the vertex P of the triangle having vertices P, Q, R.

 b) Find the area of the triangle having vertices P, Q and R.

 c) Find the equation of the plane containing the points P, Q and R.
2.a) Find the equation of the plane which contains the point $P(2, 3, -1)$ and is perpendicular to the line $x = 1 + 4t, y = 2 - t, z = 3t$

b) Find the parametric equations for the line through $P(2, 3, -1)$ which is perpendicular to the plane $3x + 4y - 6z = 24$.
(20) 3) An object is moving in 3-space according to the parametric equations \(x = t^2 + 1, \ y = t^3, \ z = t \) where \(t \) is the time. Find, as functions of \(t \)

a) position vector \(\vec{r} = \)

b) velocity vector \(\vec{v} = \)

c) acceleration vector \(\vec{a} = \)

d) speed \(\frac{ds}{dt} = \)

e) tangential component of acceleration \(a_T = \)

f) curvature \(\kappa = \)

g) normal component of acceleration \(a_N = \)
4) An object is moving in 3-space in such a way that its acceleration vector as a function of the time t is $\vec{a} = 2\vec{i} + (\cos t)\vec{j}$. Suppose you know that at time $t = 0$ its velocity vector is $\vec{v}(0) = \vec{i} + \vec{k}$ and its position vector is $\vec{r}(0) = \vec{i} + \vec{j} + \vec{k}$. Find the velocity vector and the position vector as functions of t. Now give the parametric equations for the motion.
5) An object is moving in the plane along the curve $y = \frac{1}{x}$, $x > 0$. It is moving from left to right at a constant speed of 4 ft/sec.

a) Find a_T and a_N when the object is at the point $\left(x, \frac{1}{x} \right)$.

b) Find the velocity vector and the acceleration vector when the object is at the point $(1, 1)$.
(20) 6) Carefully sketch the following surfaces.

a) \(x^2 - y + z^2 + 1 = 0 \)

b) \(x^2 - y^2 + z^2 = 0 \)

c) \(y^2 + z = 1 \)

d) \(x + y + 2z = 4 \)