(20) 1. An object is moving in 3-space along the parametric curve

\[\vec{r}(t) = (t + 1, \sin t, \cos t) \]

Find, as functions of \(t \):

(a) velocity vector \(\vec{v} = \)

(b) acceleration vector \(\vec{a} = \)

(c) speed \(\frac{ds}{dt} = \)

(d) tangential component of acceleration \(a_{\vec{N}} = \)

(e) normal component of acceleration \(a_{\vec{N}} = \)

(f) curvature \(K = \)

(g) the cosine of the angle between \(\vec{v} \) and \(\vec{a} = \)
2. An object is moving in the plane along the curve $y = \sin x$, in the direction of increasing x. Its speed is constant at 2 ft/sec.

(a) Find a_T and a_N when the object is at $(x, \sin x)$.

(b) Find the velocity vector and the acceleration vector when the object is at the point $\left(\frac{\pi}{2}, 1\right)$.
(10) 3. Consider the function $f(x, y, z) = xyz$.

(a) Find the directional derivative of f at $(1, 2, -1)$, in the direction towards the origin $(0, 0, 0)$.

(b) Find the unit vector which points in the direction of the greatest increase in f.
(12) 4. Find an equation for the tangent plane to the given surface S at the given point P.

(a) S: ellipsoid $2x^2 + y^2 + z^2 = 4$

P: $(1, 1, -1)$

(b) S: the torus given parametrically by

$$\vec{r}(u, v) = \langle (2 + \cos v) \cos u, (2 + \cos v) \sin u, \sin v \rangle$$

P: the point given by $u = v = \pi/2$
5. Find and classify the critical points for the function

\[f(x, y) = x^3 - 3xy + y^3 + 1. \]
6. Use the method of Lagrange Multipliers to find the largest and smallest values for $4xy$ on the surface $x^4 + y^4 = 32$.
(18) 7. Given the mass distribution function $\rho(x, y, z) = z$, calculate the mass of the 3D-region under the paraboloid $z = 4 - x^2 - y^2$, above the xy-plane, and inside the cylinder $x^2 + y^2 = 1$.
(15) 8. Find the work done by the force field $\vec{F}(x, y, z) = \langle x, xy \rangle$ in moving an object from $(1, 1)$ to $(2, \frac{1}{2})$ along the curve $y = 1/x$.
(15) 9. (a) Show that the field
\[
\vec{F}(x, y, z) = (y \sin z + 1, x \sin z, xy \cos z + 1)
\]
is conservative, by finding a potential function for \(\vec{F} \).

(b) Find the work done by the field \(\vec{F} \) from part (a), in moving a particle from \((1, 0, 0)\) to \((-1, 0, \pi)\) along the spiral \(\vec{r}(t) = (\cos t, \sin t, t) \).
10. Use Green’s Theorem to evaluate the line integral

\[\int_C (x^2 + y^2)dx + 2xy
dy, \]

where \(C \) is the boundary of the triangle with vertices (0, 0), (1, 2), (0, 2), oriented counterclockwise.
11. Let S be the parametrized surface

$$
\vec{r}(u, v) = \langle u \cos v, u \sin v, v \rangle \text{ (spiral ramp) with } 0 \leq u \leq 1, \quad 0 \leq v \leq 2\pi.
$$

Evaluate the surface integral $\int \int_S u \, dS$.
12. Use the divergence theorem to find the outward flux of the vector field
\(\vec{F}(x, y, z) = \langle 0, 0, z^2 \rangle \) across the hemisphere
\(z = \sqrt{1 - x^2 - y^2} \).
13. Let S be the sphere $x^2 + y^2 + z^2 = a^2$, with outward-pointing normal orientation, and let C be the boundary of the 1st-octant portion of S (oriented in the standard way with respect to the orientation of S). Use Stokes’s theorem to find the work done by the field

$$\vec{F}(x, y, z) = (-y, x, z)$$

in moving a particle once around C, in the direction given by C’s orientation.

[Hint: The total area of S is $4\pi a^2$. This should simplify things.]