1) The points $P(1, 0, 2), Q(2, 1, 2)$ and $R(0, -2, 4)$ are vertices of a triangle in 3-space.

a) Find the angle, in degrees, at the vertex P.

b) Find the area of the triangle.
(20) 2. Find the equation for each of the following planes.

a) The plane containing the points \(P, Q \) and \(R \) of problem 1.

b) The tangent plane to the surface \(x^2 + z^4 = 5y^2 + 5z^2 \) at the point \((3, 1, 2)\).
3) Let \(f(x, y, z) = xz^2 + yx^2 + zy^2 \).

a) Find the directional derivative of \(f(x, y, z) \) at \((x, y, z) = (1, 2, -1)\) in the direction of the vector \(\vec{a} = \vec{i} + 5\vec{j} + 3\vec{k} \).

b) Find the value of the largest directional derivative of \(f(x, y, z) \) at \((1, 2, -1)\). In which direction does it occur?
(20) 4) An object is moving in 3-space in such a way that its acceleration vector as a function of the time t is

$$\mathbf{a} = (\cos t + \sin t) \mathbf{i} + (\cos t - \sin t) \mathbf{j}. $$

Suppose that at time $t = 0$ its velocity vector is $\mathbf{v}(0) = -\mathbf{i} + \mathbf{j} + 2k$. Find, as functions of t, a_T, a_N, curvature, \mathbf{T} and \mathbf{N}.
(20) 5) Let \(f(x, y) = -x + xy - (e^y)(x^{-1}) \). Find and classify the critical points of \(f(x, y) \) in the region \(x \neq 0 \).
(15) 6) Use the method of LAGRANGE MULTIPLIERS to find the smallest value of \(F(x, y, z) = x^2 + y^2 + z^4 \) on the surface \(xyz = 64 \) for \(x > 0, y > 0 \) and \(z > 0 \).
(10) 7) Calculate the volume of the 3D-region in the first octant which is enclosed by the surfaces $y = x, y = 2, x = 0, z = 2y$ and $z = 6$.
(15) 8) The force field \(\vec{F} = xy \vec{i} - x \vec{j} \) acts on an object as it moves in the plane. Find the work done by \(\vec{F} \) as the object moves from \((2, 0)\), to \((-2, 0)\) along the upper half of the circle \(x^2 + y^2 = 4 \).
(10) 9) Show that the force field $\vec{F} = (2x + y^{-1}) \hat{i} + (2y - xy^{-1}) \hat{j}$ is conservative in the region $y > 0$ by finding a potential function for it. Now use this potential function to calculate the work done by \vec{F} as it acts on an object which moves from $(-1, 1)$ to $(4, 2)$ along any curve in the upper half plane.
Use Green’s Theorem to evaluate the line integral
\[
\int_C (3y^2 + 3x^2 - y^3)dx + (6xy + x^3)dy
\]
where \(C \) is the curve consisting of the \(x \)-axis from \((-2, 0)\) to \((2, 0)\) followed by the upper half of the circle \(x^2 + y^2 = 4 \) from \((2, 0)\) to \((-2, 0)\).
11) Let T be the 3D-region which is inside the sphere $x^2 + y^2 + z^2 = 4$ and above the xy-plane, and S be its boundary. If $\vec{F} = xz \vec{i} + yz \vec{j} + z \vec{k}$, use the divergence theorem to find the value of the outward flux integral of \vec{F} across S.
(20) 12) Let S be that part of $z = x^2 + y^2$ which is in the first octant and under the plane $z = 4$. Suppose that $\vec{F} = y\vec{i} - x\vec{j} + y^2\vec{k}$.

a) Calculate $\text{curl} \vec{F}$.

b) Let C be the positively oriented boundary of S where S is given the upward pointing normal. Use Stokes’ Theorem to find the value of the line integral $\int_C \vec{F} \times \vec{T} \, ds$.