(30) 1. An object is moving in a 3-space according to the parametric equations $x = 2t$, $y = t$, $z = 2 \sin t$, where t is the time. Find the followings:

a) Position vector $\mathbf{r} =$

b) Velocity vector $\mathbf{v} =$

c) Acceleration vector $\mathbf{a} =$

d) Speed $=$

e) $a_T =$

f) Curvature $K =$

g) $a_N =$

h) Find T and N at $t = \frac{\pi}{2}$.
(20) 2. An object is moving in the xy-plane around the circle $x^2 + y^2 = 25$, starting at $t = 0$, in the clockwise direction. Its speed is $2(1 + \sin t)$ ft/sec.

a) Find a_T and a_N as a function of t.

b) Suppose that at $t = \frac{\pi}{2}$, the object is at $(x, y) = (4, 3)$. Find the velocity vector and the acceleration vector at this point.
(20)3. Suppose that \(w = f(x, y), \ x = s^2 t, \ y = \frac{s}{t} \). Suppose that \(\frac{\partial f}{\partial x} = 1 \) and \(\frac{\partial f}{\partial y} = 2 \) at \((x, y) = (4, 2)\). Use the chain rule to find the partial derivatives of \(f(x, y) \) with respect to \(s \) and \(t \) at \((x, y) = (4, 2)\).
Given \(f(x, y) = xe^y \):

a) Find the gradient vector field \(\nabla f(x, y) \).

b) Find the directional derivative of \(f(x, y) \) at \((x, y) = (2, 1)\) in the direction of the vector \(i + j \).

c) Find the value of the direction of maximum increase of \(f(x, y) \) at \((2, 1)\).
(10)5. Let $3s^2u - s^2t^2 + 2t^3 + 3tu - 5 = 0$. Use implicit differentiation to find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$.