Calculus III, Summer 2006
Final Exam

You MUST show your work to receive credit.

(20)1. The points P(0,1,1), Q(1,0,1) and R(1,1,0) are the vertices of a triangle in 3-space.

a) Find the angle (in degrees) at the vertex P of the triangle

b) Find the area of the triangle.

c) Find the equation of the plane which contains the triangle.
(20)2. An object is moving in a 3-space according to the parametric equations \(x = 2\cos t, \)
\[y = 2\sin t, \quad z = t^2, \]
where \(t \) is the time. Find the followings:

a) Position vector \(\mathbf{r} = \)

b) Velocity vector \(\mathbf{v} = \)

c) Acceleration vector \(\mathbf{a} = \)

d) Speed \(= \)

e) \(a_T = \)

f) Curvature \(K = \)

g) \(a_N = \)
(20) 3. An object is moving in the xy-plane along the curve \(y = \frac{1}{2} x^2 \), starting at \(t = 0 \), from left to right. Its speed is \(2(1 + t^2) \) ft/sec.

a) Find \(a_r \) and \(a_N \) as a function of \(t \) at \((t, \frac{1}{2} t^2) \).

b) Suppose that at \(t = 1 \) the object is at \((x, y) = (1, 1/2)\). Find the velocity vector and the acceleration vector at this point.
(20)4. Given \(f(x, y) = \frac{1}{y(x^2 + 4y)^2} \).

a) Find the gradient vector field \(\nabla f(x, y) \).

b) Find the directional derivative of \(f(x, y) \) at \((x, y) = (1, 2)\) in the direction of the vector \(\mathbf{v} = 3\mathbf{i} - \mathbf{j} \).

c) Find a vector which points in the direction that gives the largest directional derivative for \(f(x, y) \) at \((x, y) = (1, 2)\).

d) Find the value of the direction of maximum increase of \(f(x, y) \) at \((1, 2)\).
(25)5. Let \(f(x, y) = x^3 y - 12xy + y^2 \). Find all the critical points and then use second partial test to classify these.
(15) 6. Find the volume of the solid bounded by the graphs of the equations
\(y = 3x - x^2, y = 2x, z = 0 \) and \(z = x + 2y \).
(20)7. Use a triple integral in spherical coordinates to calculate the volume of the 3-D region which is bounded by the spheres \(x^2 + y^2 + z^2 = 4 \) and \(x^2 + y^2 + z^2 = 25 \) and above the cone \(z = \left(x^2 + y^2 \right)^{\frac{1}{2}} \).
(20) 8. Let $F(x,y,z) = \langle y^2z^3, 2xyz^3, 3xy^2z^2 \rangle$ be a vector field.

a) Find the divergence of the vector field.

b) Is the vector field F conservative? If so, find the potential function.
(20)9. Use **Green’s Theorem** to find the work done by the force field $F(x,y) = (y^3, x^3 + 3xy^2)$ on a particle that is moving around C where C is a path from $(0,0)$ to $(1,1)$ along the graph of $y = x^3$ and from $(1,1)$ to $(0,0)$ along the graph of $y = x$.
(20) 10. Verify Stokes’s Theorem for the vector field \(F(x, y, z) = (-y + z, x - z, x - y) \), where \(S \) is the surface of the paraboloid \(z = 4 - x^2 - y^2 \) oriented with the upward pointing normal and \(C \) is the trace of \(S \) in the XY-plane.