CALCULUS II - EXAM 2
March 6, 2007

Show all work for full credit. No books, notes or calculators are permitted. The point value of each problem is given in the left-hand margin. You have 65 minutes.

\[\int \sec x \, dx = \ln | \sec x + \tan x | + C \quad \int \csc x \, dx = - \ln | \csc x + \cot x | + C \]
\[\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left(\frac{x}{a} \right) + C \quad \int \sqrt{a^2 - u^2} \, du = \frac{1}{2} \left(u \sqrt{a^2 - u^2} + a^2 \arcsin \frac{u}{a} \right) + C, \]
\[\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \left(\frac{x}{a} \right) + C \quad \int \sqrt{u^2 \pm a^2} \, du = \frac{1}{2} \left(u \sqrt{u^2 \pm a^2} \pm a^2 \ln | u + \sqrt{u^2 \pm a^2} | \right) + C \]

1. Evaluate the improper integrals or show that they diverge. Make careful use of limit notation.

(8) a) \[\int_{1}^{4} \frac{dx}{\sqrt{4-x}} \]

(8) b) \[\int_{3}^{\infty} \frac{1}{x-2} - \frac{1}{x-1} \, dx \]
(12) 2. Calculate the length of the catenary curve $y = \cosh x$, $a \leq x \leq b$.

Given: $\frac{d}{dx} \cosh x = \sinh x$, $\frac{d}{dx} \sinh x = \cosh x$, $\cosh^2(x) - \sinh^2(x) = 1$.
3. a) Set up an integral for the area of the surface obtained by rotating the curve $y = \ln x$, $1 \leq x \leq 2$, around the y-axis.

b) Evaluate the integral in part (a). You may use the integral formulas on page 1.
4. Find the centroid of the region bounded by the curves \(y = x^2 \) and \(y = 1 \). Use symmetry where possible. Recall, for the region trapped between \(y = f(x) \), \(y = g(x) \), \(a \leq x \leq b \), with uniform density \(\rho = 1 \) we have

\[
M_x = \frac{1}{2} \int_a^b f(x)^2 - g(x)^2 \, dx, \quad M_y = \int_a^b x(f(x) - g(x)) \, dx.
\]

5. Find the center of mass for the region \(S \cup T \) (the union of \(S \) and \(T \)) where \(S \) is a square of density \(\rho \) with vertices \((0, 0), (2, 0), (0, 2), (2, 2)\) and \(T \) is a triangle of density \(2\rho \) with vertices at \((0, 0), (-3, 0), (0, -3)\). (Start by drawing a picture of the region.)
6. The population $P = P(t)$ of a colony satisfies the differential equation

$$\frac{dP}{dt} = \frac{1}{1000} P(1000 - P)$$

a) For what values of P is the population increasing?

b) If the initial population is $P(0) = 2$, at what rate is the population growing at time $t = 0$?

c) Make a sketch of the graph of $P(t)$ given the initial condition $P(0) = 2$. You do not need to solve the differential equation to do this. Indicate clearly the behavior of $P(t)$ as $t \to \infty$.

7. Solve the following differential equation with initial condition.

$$\frac{dy}{dx} = (1 + y)e^{2x} \quad y(0) = 0.$$
8. a) Make a rough sketch of the curve \(x = 1 - \cos(t) \), \(y = \sin^2(t) \), \(0 \leq t \leq \pi \).
Place an arrow on the curve to show the direction you travel with increasing \(t \). (It may help to do part (b) first.)

b) Convert the equation in part (a) to a cartesian equation in \(x, y \).

9. An object travels twice counterclockwise around a circle of radius 2 centered at (1,2) starting from the point (3,2). Give a set of parametric equations for the curve it follows.