1 (16 pts). For the function $f(x) = x^4 - 2x^2$,

find all critical points and inflection points. Identify each critical point as a local maximum, local minimum, or neither.

2 (12 pts). Find the exact global maximum and minimum values of the function

$$f(x) = x^3 - 3x^2 - 9x + 15$$

on the closed interval $-5 \leq x \leq 4$.
3 (12 pts). The demand equation for a quantity q of a product at a price p, in dollars, is $p = -4q + 4004$. The company producing the product reports the cost C, in dollars, to produce a quantity q is $C = 4q + 5$ dollars.

(a) (4 pts). Express the company’s profit, in dollars, as a function of q.

(b) (4 pts). What production level earns the largest possible profit?

(c) (4 pts). What is the largest possible profit?
4 (12 pts). You are the manager of a company that produces slippers that sell for $20 per slipper. You are producing 1200 slippers each month, at an average cost of $2 per slipper. The marginal cost at a production level of 1200 is $3 per slipper.

(a) (4 pts). Are you making or losing money?

(b) (8 pts). Will increasing production increase or decrease your average cost?

5 (12 pts). The demand for yams is given by \(q = 5000 - 10p^2 \), where \(q \) is in pounds of yams and \(p \) is the price, in dollars, of a pound of yams.

(a) (4 pts). If the current price of yams is $2 per pound, how many pounds will be sold?

(b) (8 pts). Is the demand at $2 per pound elastic or inelastic?
6 (12 pts). In the spring of 2003, the disease SARS spread in accordance with the logistic function

\[P = \frac{1760}{1 + 17.53e^{-0.1408t}} \]

where \(P = P(t) \) is the total number of SARS cases reported in Hong Kong \(t \) days after March 17, 2003.

(a) (4 pts). How many SARS cases were reported in Hong Kong on March 17, 2003?

(b) (4 pts). What limiting value of \(P \) does this function predict?

(c) (4 pts). How many days after March 17, 2003, was the disease spreading most rapidly?
7 (12 pts). The temperature adjusted for wind-chill is a temperature which tells you how cold it feels, as a result of the combination of wind and temperature. See the following table.

<table>
<thead>
<tr>
<th>temperature (°F)</th>
<th>5</th>
<th>31</th>
<th>25</th>
<th>19</th>
<th>13</th>
<th>7</th>
<th>1</th>
<th>-5</th>
<th>-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>wind speed (mph)</td>
<td>10</td>
<td>27</td>
<td>21</td>
<td>15</td>
<td>9</td>
<td>3</td>
<td>-4</td>
<td>-10</td>
<td>-16</td>
</tr>
<tr>
<td>wind speed (mph)</td>
<td>15</td>
<td>25</td>
<td>19</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>-7</td>
<td>-13</td>
<td>-19</td>
</tr>
<tr>
<td>wind speed (mph)</td>
<td>20</td>
<td>24</td>
<td>17</td>
<td>11</td>
<td>4</td>
<td>-2</td>
<td>-9</td>
<td>-15</td>
<td>-22</td>
</tr>
<tr>
<td>wind speed (mph)</td>
<td>25</td>
<td>23</td>
<td>16</td>
<td>9</td>
<td>-4</td>
<td>-11</td>
<td>-17</td>
<td>-24</td>
<td></td>
</tr>
</tbody>
</table>

For example, if the temperature is 0 °F and the wind speed is 15 mph, then it feels like -19 °F.

(a) (3 pts). If the temperature is 35 °F, what wind speed makes it feel like 24 °F?

(b) (3 pts). If the temperature is 20 °F, what wind speed makes it feel like 9 °F?

(c) (3 pts). If the wind is blowing at 15 mph, what temperature feels like 0 °F?

(d) (3 pts). If the wind is blowing at 20 mph, what temperature makes it feel like -15 °F?
8 (12 pts). Sketch a contour diagram for the function $f(x,y) = y - x^2$ with at least four labeled contours.