1 (total points: 13). Suppose that the graph of a linear function \(y = f(x) \) contains the points \((-2, 3)\) and \((4, 0)\).

(a) (5 points). Find the slope \(m \).

(b) (5 points). Find the vertical intercept \(b \).

(c) (3 points). Sketch the graph of \(f(x) \) on the given coordinate system.

2 (total points: 12). Values of a linear cost function in dollars are in the following table.

<table>
<thead>
<tr>
<th>(q)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C(q))</td>
<td>5000</td>
<td>5020</td>
<td>5040</td>
<td>5060</td>
<td>5080</td>
</tr>
</tbody>
</table>

(a) (6 points). Find a formula for the cost function.

(b) (6 points). Assume that the company sell the product at the price of 12 dollars per item. Find the break-even point.
3(total points: 13). The supply and demand curves for a certain product are given in terms of price, \(p \), by

\[S(p) = 30p - 5000 \quad \text{and} \quad D(p) = 10000 - 20p. \]

(a)(5 points). Find the equilibrium price and quantity.

(b)(5 points). If a specific tax of $40 per unit is imposed on producers, find the new equilibrium price and quantity.

(c)(3 points). How much of the $40 tax is paid by the consumers, and how much by producers?

4(total points: 12). In each of the items (a)–(d), determine if the function is a power function. If it is a power function, write it in the form \(y = kx^p \) and give the values of the coefficient \(k \) and the exponent \(p \).

(a)(3 points). \(y = 5\sqrt{x} \).

(b)(3 points). \(y = 3 \cdot 4^x \).

(c)(3 points). \(y = \frac{1}{5x} \).

(d)(3 points). \(y = (2x^2)^3 \).
5(total points: 12). Solve the following equation for \(t \) (You should use your calculator to find a decimal approximation).

\[2 \cdot 3^t = 5 \cdot 2^t. \]

6(total points: 13). A cup of coffee contains 100 mg of caffeine, which leaves the body at a continuous rate of 17% per hour.

(a)(6 points). Write a formula for the amount, \(A \) mg, of caffeine in the body \(t \) hours after drinking a cup of coffee.

(b)(7 points). Use logarithms to find the half-life of the caffeine.
The following table gives partial data of a function $f(x)$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>50000</td>
<td>60000</td>
<td>72000</td>
<td>86400</td>
</tr>
</tbody>
</table>

Answer the following questions (You must show your work).

(a) **6 points**. Could the function $f(x)$ be linear or exponential?

(b) **6 points**. Find a formula for the function.

Let $f(x) = x^3 - 1$ and $g(x) = x + 1$. Find the following (no need for simplification).

(a) **5 points**. $f(g(x))$

(b) **4 points**. $g(f(x))$

(c) **3 points**. $f(f(x))$.