Check that you have all three pages. SHOW ALL YOUR WORK. Write complex answers in $a + bi$ form.

1. (8 points) Write the complex numbers in the standard form $a + bi$, where a, b are real numbers:
 (a) $\sqrt{-16} + i^{11}$
 (b) $\frac{1 + i}{2 - i}$

2. (7 points) State the Quadratic Formula (for the solutions of the general quadratic $ax^2 + bx + c = 0$) and use it to solve the equation $x^2 + 29 - 10x = 0$. Specify your values of a, b, c and simplify your answer.

3. (10 points) Find all x that satisfy the equation $\frac{x}{x+2} + \frac{12}{x^2 - 4} = \frac{3}{x - 2}$.

4. (10 points) Find all the real numbers x which satisfy the equation $\sqrt{x + 8} - 6 = x$.

5. (6 points) (a) The slope m_1 of the line $3x + 2y = 7$ is $m_1 = \underline{\hspace{2cm}}$.

 (b) The slope m_2 of a line perpendicular to the line in (a) is $m_2 = \underline{\hspace{2cm}}$.
6. (6 points) (a) The slope \(m \) of the line passing through \((1, -2)\) and \((-2, 7)\) is \(m = \) __________.

(b) An equation for the line passing through the points in (a) is \(y = \) ____________.

7. (7 points) Sketch the graph of the piecewise-defined function

\[
f(x) = \begin{cases}
2, & x \geq 0, \\
3x + 6, & x < 0.
\end{cases}
\]

8. (8 points) For the graph of the quadratic

\[y = 9x^2 - 6x - 1 \]

(a) Find the vertex. Is it a relative maximum or minimum?

(b) Find the \(x \)-intercepts if any (give exact values not a calculator approximation).

9. (6 points) (a) Test to see whether the function \(f(x) = x^3 + \frac{1}{x^3} \) is even, odd or neither.

(b) Test whether the graph of \(x^2 + y^2 = xy + 1 \) is symmetric about the origin.

10. (6 points) Solve the linear equation for \(x \). Give an exact answer, not a calculator approximation.

\[
\sqrt{2}(x + 9) = 3(x + \sqrt{2}) - \sqrt{2}
\]
11. (9 points) The graph of \(y = f(x) \) is shown on the first set of axes. Sketch the graphs requested on the other two. Underneath describe the transformations in words.

\[
y = f(x) \quad y = f(x + 1) \quad y = -2f(x)
\]

12. (8 points) (a) Use your calculator to graph the function

\[
f(x) = x^3 - x^2 - 12x + 15
\]

from \(x = -5 \) to \(x = 5 \) (use zoom fit for the \(y \) values and label your axes with the resulting \(y \) range).

(b) Give the coordinates (to 3 decimal places) of the points:
 - relative maximum =
 - relative minimum =

(c) Specify the interval(s) on which the function is increasing.

13. (9 points) A gardener has 2000 yards of fencing to enclose four adjacent plots as shown. Let \(x \) denote the width of the enclosure and \(y \) its total length.

(a) Write the length \(y \) in terms of \(x \):

(b) Write the total area enclosed in terms of \(x \):

(c) What choice of \(x \) maximizes this area? Justify your answer.