Math 240 Home, Textbook Contents, Online Homework Home

Warning: MathJax requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.

Exact Equations

Additional Examples

Solve the following initial value problem, $$\begin{align} \frac{dy}{dx} &= \frac{-5y^2 - 10x + 3y}{10xy - 12y^2 - 34y - 3x + 14} \\ y(-2) &= 0 \end{align}$$ This can be written as an exact equation. First we find the general solution following the paradigm.

  1. We write the equation in the standard form, M dx + N dy = 0. $$ (5y^2 + 10x - 3y) dx + (10xy - 12y^2 - 34y - 3x + 14) dy = 0 $$
  2. We test for exactness. $$\frac{\partial}{\partial y}\left(5y^2 + 10x - 3y\right) = 10y - 3 = \frac{\partial}{\partial x}\left(10xy - 12y^2 - 34y - 3x + 14\right) $$ so the equation is exact.

  3. Write the partial differential equations. $$ \begin{align} \frac{\partial F}{\partial x} &= 5y^2 + 10x - 3y\\ \frac{\partial F}{\partial y} &= 10xy - 12y^2 - 34y - 3x + 14 \end{align}$$
  4. Integrate the first partial differential equation. $$ F(x,y) = \int (5y^2 + 10x - 3y)\,\partial x = 5xy^2 + 5x^2 - 3xy + C(y) $$
  5. Integrate the second partial differential equation. $$ F(x,y) = \int (10xy - 12y^2 - 34y - 3x + 14)\,\partial y = 5xy^2 - 4y^3 - 17y^2 - 3xy + 14y + \tilde{C}(x) $$
  6. Equate the expressions for F(x,y).

    Matching the expressions up, we find $C(y) = -4y^3 - 17y^2 + 14y$ and $ \tilde{C}(x) = 5x^2. $ So $$ F(x,y) = -4y^3 + 5xy^2 - 17y^2 + 5x^2 - 3xy + 14y. $$

  7. The solution is $F(x,y) = K.$ $$ -4y^3 + 5xy^2 - 17y^2 + 5x^2 - 3xy + 14y = K $$
Now we plug in the initial values $x = -2$ and $y = 0$ and solve for $K = 20$. So the solution to the initial value problem is $$ -4y^3 + 5xy^2 - 17y^2 + 5x^2 - 3xy + 14y = 20 $$ You may reload this page to generate additional examples.


If you have any problems with this page, please contact bennett@math.ksu.edu.
©2010, 2014 Andrew G. Bennett